Skip to main content
Log in

Aerosol optical depth and water vapor variability assessed through autocorrelation analysis

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

Numerous studies globally have centered on atmospheric air pollution due to its profound health and climate effects. NASA’s AERONET (National Aeronautics and Space Administration - AErosol RObotic NETwork) network has been one of the world’s leading tools for accessing the physical properties of atmospheric aerosols from various sources, mainly anthropogenic ones. This study proposes a new approach to evaluate the Aerosol Optical Depth (AOD) and precipitable water vapor (PWV) seasonality and the influence of short-term perturbations, such as the presence of local and regional aerosol sources or meteorological events, based on the temporal autocorrelation function (ACF). We introduce the adimensional seasonal assessment autocorrelation function, \(\Delta _{{{\text{ACF,k}}}}\), as a parameter to quantify the influence of the short-term perturbation, and we use its average, \(\langle \Delta _{{{\text{ACF,k}}}} \rangle\), as a proxy for seasonality loss. The smaller \(\langle \Delta _{{{\text{ACF,k}}}} \rangle\), the lower the influence of high-frequency perturbations on seasonality. Nine AERONET network sites in South America with different environmental characteristics were evaluated. The selected sites were São Paulo, Rio Branco, Manaus, ATTO (Amazon Tall Tower Observatory), Alta Floresta, Ji-Paraná, Cuiabá, Arica, and La Paz. The results showed that sites with less local anthropogenic aerosol sources acting as short-term perturbations had pronounced AOD seasonality and a linear relationship between the ACF functions of AOD, PWV, and the simulated direct solar radiation. As local anthropogenic sources become more prominent, the AOD ACF is attenuated and has less amplitude in seasonal oscillations. In addition, the relationship between AOD and PWV ACF becomes more attenuated. Buenos Aires has shown to be the most affected site, with \(\langle \Delta _{{{\text{ACF,AOD}}}} \rangle\) of 0.47, followed by São Paulo and La Paz. The areas in the Amazonian deforestation arc had relatively close average \(\Delta _{{{\text{ACF,AOD}}}}\), with Alta Floresta representing the most influenced by short-term perturbations. Central Amazonian sites had the lowest \(\Delta _{{{\text{ACF,AOD}}}}\) averages, of about 0.25, which means that constant local anthropogenic sources do not dominate the AOD seasonality and that the wet deposition still plays an essential role in regulating the aerosol sources in the atmosphere. In contrast, the behavior of \(\langle \Delta _{{{\text{ACF,PWV}}}} \rangle\) in the Amazon region varies mainly due to meteorological influences, with the highest values observed in the central region, likely related to the high amount of water vapor in the atmosphere, and more pronounced seasonality near deforestation arcs and major cities. The proposed method eliminates the need for a reference site when comparing seasonalities of different time series, enabling valid comparisons across different areas without a comparative reference point. The method can be further applied to other atmospheric time series, including greenhouse gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data available under correspondent author’s request.

Code availability

All codes are available under the author’s request.

References

  • Abe KC, Miraglia SGEK (2016) Health impact assessment of air pollution in São Paulo, Brazil. Int J Environ Res Public Health 13:694

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JDM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22:711–728

    Article  Google Scholar 

  • Andreae MO, Acevedo OC, Araùjo A, Artaxo P, Barbosa CGG, Barbosa HMJ, Brito J, Carbone S, Chi X, Cintra BBL, da Silva NF, Dias NL, Dias-Júnior CQ, Ditas F, Ditz R, Godoi AFL, Godoi RHM, Heimann M, Hoffmann T, Kesselmeier J, Könemann T, Krüger ML, Lavric JV, Manzi AO, Lopes AP, Martins DL, Mikhailov EF, Moran-Zuloaga D, Nelson BW, Nölscher AC, Santos Nogueira D, Piedade MTF, Pöhlker C, Pöschl U, Quesada CA, Rizzo LV, Ro C-U, Ruckteschler N, Sá LDA, de Oliveira Sá M, Sales CB, dos Santos RMN, Saturno J, Schöngart J, Sörgel M, de Souza CM, de Souza RAF, Su H, Targhetta N, Tóta J, Trebs I, Trumbore S, van Eijck A, Walter D, Wang Z, Weber B, Williams J, Winderlich J, Wittmann F, Wolff S, Yáñez Serrano AM (2015) The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmos Chem Phys 15:10723–10776. https://doi.org/10.5194/acp-15-10723-2015

    Article  CAS  Google Scholar 

  • Andreae MO, Afchine A, Albrecht R, Holanda BA, Artaxo P, Barbosa HMJ, Borrmann S, Cecchini MA, Costa A, Dollner M, Fütterer D, Järvinen E, Jurkat T, Klimach T, Konemann T, Knote C, Krämer M, Krisna T, Machado LAT, Mertes S, Minikin A, Pöhlker C, Pöhlker ML, Pöschl U, Rosenfeld D, Sauer D, Schlager H, Schnaiter M, Schneider J, Schulz C, Spanu A, Sperling VB, Voigt C, Walser A, Wang J, Weinzierl B, Wendisch M, Ziereis H (2018) Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin. Atmos Chem Phys 18:921–961. https://doi.org/10.5194/acp-18-921-2018

    Article  CAS  Google Scholar 

  • Artaxo P, Martins JV, Yamasoe MA, Procópio AS, Pauliquevis TM, Andreae MO, Guyon P, Gatti LV, Leal AMC (2002) Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. J Geophys Res: Atmos 107:LBA-49

    Google Scholar 

  • Artaxo P, Hansson H-C, Andreae MO, Bäck J, Alves EG, Barbosa HM, Bender F, Bourtsoukidis E, Carbone S, Chi J et al (2022) Tropical and boreal forest atmosphere interactions: a review, Tellus. Chemical and Physical Meteorology, Series B Chemical and Physical Meteorology 74(1):24–163. https://doi.org/10.16993/tellusb.34

  • Bernstein JA, Alexis N, Barnes C, Bernstein IL, Nel A, Peden D, Diaz-Sanchez D, Tarlo SM, Williams PB (2004) Health effects of air pollution. J Allergy Clin Immunol 114:1116–1123

    Article  Google Scholar 

  • Borsdorf A, Haller A (2020) Urban montology: mountain cities as transdisciplinary research focus. The Elgar companion to geography, transdisciplinarity and sustainability. Edward Elgar Publishing, Cheltenham, pp 140–154

    Google Scholar 

  • Brito J, Carbone S, Monteiro A, dos Santos D, Dominutti P, de Oliveira Alves N, Rizzo VL, Artaxo P (2018) Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer. Sci. Rep 8:1–10

    Article  Google Scholar 

  • Carra E, Marzo A, Ballestrín J, Polo J, Barbero J, Alonso-Montesinos J, Monterreal R, Abreu EF, Fernández-Reche J (2020) Atmospheric extinction levels of solar radiation using aerosol optical thickness satellite data. Validation Methodol Meas Syst Renew Energy 149:1120–1132

    Google Scholar 

  • Carracedo-Martínez E, Taracido M, Tobias A, Saez M, Figueiras A (2010) Case-crossover analysis of air pollution health effects: a systematic review of methodology and application. Environ Health Perspect 118:1173–1182

    Article  Google Scholar 

  • Chau K, Franklin M, Lee H, Garay M, Kalashnikova O (2021) Temporal and spatial autocorrelation as determinants of regional AOD-PM2. 5 model performance in the Middle East. Remote Sens 13:3790

    Article  Google Scholar 

  • Cheung H-C, Wang T, Baumann K, Guo H (2005) Influence of regional pollution outflow on the concentrations of fine particulate matter and visibility in the coastal area of southern China. Atmos Environ 39:6463–6474

    Article  CAS  Google Scholar 

  • Chu Y, Liu Y, Li X, Liu Z, Lu H, Lu Y, Mao Z, Chen X, Li N, Ren M et al (2016) A review on predicting ground PM2. 5 concentration using satellite aerosol optical depth. Atmosphere 7:129

    Article  Google Scholar 

  • Cuneo L, Ulke AG, Cerne B (2022) Advances in the characterization of aerosol optical properties using long-term data from AERONET in Buenos Aires. Atmos Pollut Res 13:101–360

    Article  Google Scholar 

  • da Silva Palácios R, Romera KS, Curado LFA, Banga NM, Rothmund LD, da Silva Sallo F, Morais D, Santos ACA, Moraes TJ, Morais FG et al (2020) Long term analysis of optical and radiative properties of aerosols in the Amazon Basin. Aerosol Air Qual Res 20:139–154

    Article  Google Scholar 

  • de Fatima Andrade M, Kumar P, de Freitas ED, Ynoue RY, Martins J, Martins LD, Nogueira T, Perez-Martinez P, de Miranda RM, Albuquerque T et al (2017) Air quality in the megacity of São Paulo: evolution over the last 30 years and future perspectives. Atmos Environ 159:66–82

    Article  Google Scholar 

  • dos Santos DAM, Brito JF, Godoy JM, Artaxo P (2016) Ambient concentrations and insights on organic and elemental carbon dynamics in São Paulo, Brazil. Atmos Environ 144:226–233

    Article  Google Scholar 

  • Dubovik O, Sinyuk A, Lapyonok T, Holben BN, Mishchenko M, Yang P, Eck TF, Volten H, Munoz O, Veihelmann B et al (2006) Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. Journal of Geophysical Research: Atmospheres, 111:D11208

  • Franco MA, Ditas F, Kremper LA, Machado LA, Andreae MO, Araújo A, Barbosa HM, de Brito JF, Carbone S, Holanda BA et al (2022) Occurrence and growth of sub-50 nm aerosol particles in the Amazonian boundary layer. Atmos Chem Phys 22:3469–3492

    Article  CAS  Google Scholar 

  • Hair JF (2011) Multivariate data analysis: An overview, International encyclopedia of statistical science, pp 904–907. https://link.springer.com/referenceworkentry/10.1007%2F978-3-642-04898-2_395

  • Holanda BA, Pöhlker ML, Walter D, Saturno J, Sörgel M, Ditas J, Ditas F, Schulz C, Franco MA, Wang Q et al (2020) Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke. Atmos Chems Phys 20:4757–4785

    Article  CAS  Google Scholar 

  • Holanda BA, Franco MA, Walter D, Artaxo P, Carbone S, Cheng Y, Chowdhury S, Ditas F, Gysel-Beer M, Klimach T et al (2023) African biomass burning affects aerosol cycling over the Amazon. Commun Earth Environ 4:154

    Article  Google Scholar 

  • Holben BN, Eck TF, Slutsker IA, Tanre D, Buis J, Setzer A, Vermote E, Reagan JA, Kaufman Y, Nakajima T (1998) AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16

    Article  Google Scholar 

  • Hua W, Junfeng Z, Fubao Z, Weiwei Z (2016) Analysis of spatial pattern of aerosol optical depth and affecting factors using spatial autocorrelation and spatial autoregressive model. Environ Earth Sci 75:1–17

    Article  Google Scholar 

  • INDEC A (2010) Censo nacional de población, hogares y vivienda, República Argentina: Inst Nac Estadística y Censos. https://bit.ly/2LHKHff

  • Jin X, Fiore AM, Curci G, Lyapustin A, Civerolo K, Ku M, Van Donkelaar A, Martin RV (2019) Assessing uncertainties of a geophysical approach to estimate surface fine particulate matter distributions from satellite-observed aerosol optical depth. Atmos Chem Phys 19:295–313

    Article  CAS  Google Scholar 

  • Kambezidis H, Kaskaoutis D (2008) Aerosol climatology over four AERONET sites: an overview. Atmos Environ 42:1892–1906

    Article  CAS  Google Scholar 

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367

    Article  CAS  Google Scholar 

  • Kaskaoutis D, Kambezidis H, Hatzianastassiou N, Kosmopoulos P, Badarinath K (2007) Aerosol climatology: on the discrimination of aerosol types over four AERONET sites. Atmos Chemis Phys Discuss 7:6357–6411

    Google Scholar 

  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Frontiers in public health 8:14. https://doi.org/10.3389/fpubh.2020.00014

  • Mardoñez V, Pandolfi M, Borlaza LJS, Jaffrezo JL, Alastuey A, Besombes JL, Moreno RI, Perez N, Močnik G, Ginot P, et al (2022) Source apportionment study on particulate air pollution in two high-altitude Bolivian cities: La Paz and El Alto. Atmospheric Chemistry and Physics Discussions 23(18):10325–10347

  • Monteiro dos Santos D, Rizzo LV, Carbone S, Schlag P, Artaxo P (2021) Physical and chemical properties of urban aerosols in São Paulo, Brazil: links between composition and size distribution of submicron particles. Atmos Chem Phys 21:8761–8773

    Article  Google Scholar 

  • Morais FG, Franco MA, Palácios R, Machado LA, Rizzo LV, Barbosa HM, Jorge F, Schafer JS, Holben BN, Landulfo E et al (2022) Relationship between land use and spatial variability of atmospheric brown carbon and black carbon aerosols in Amazonia. Atmosphere 13:1328

    Article  CAS  Google Scholar 

  • Næss Ø, Nafstad P, Aamodt G, Claussen B, Rosland P (2007) Relation between concentration of air pollution and cause-specific mortality: four-year exposures to nitrogen dioxide and particulate matter pollutants in 470 neighborhoods in Oslo, Norway. Am J Epidemiol 165:435–443

    Article  Google Scholar 

  • Nascimento JP, Bela MM, Meller BB, Banducci AL, Rizzo LV, Vara-Vela AL, Barbosa HM, Gomes H, Rafee SA, Franco MA et al (2021) Aerosols from anthropogenic and biogenic sources and their interactions-modeling aerosol formation, optical properties, and impacts over the central Amazon basin. Atmos Chem Phys 21:6755–6779

    Article  CAS  Google Scholar 

  • Nascimento JP, Barbosa HM, Banducci AL, Rizzo LV, Vara-Vela AL, Meller BB, Gomes H, Cezar A, Franco MA, Ponczek M et al (2022) Major regional-scale production of O3 and secondary organic aerosol in remote amazon regions from the dynamics and photochemistry of urban and forest emissions. Environ Sci Technol 56:9924–9935

    Article  CAS  Google Scholar 

  • Nworof O, Chineka T (2007) Mathematical representation of seasonal cycles of aerosol optical depths at Ilorin Nigeria using AERONET data. Global J Pure Appl Sci 13:285–294

    Google Scholar 

  • Oliveira M, Drumond A, Rizzo L (2022) Air pollution persistent exceedance events in the Brazilian metropolis of Sao Paulo and associated surface weather patterns. Int J Environ Sci Technol 19:9495–9506

    Article  CAS  Google Scholar 

  • Palácios R, Nassarden DC, Franco MA, Morais FG, Machado LA, Rizzo LV, Cirino G, Pereira AG, Ribeiro PDS, Barros LR (2022) Evaluation of MODIS Dark Target AOD Product with 3 and 10 km Resolution in Amazonia. Atmosphere 13:1742

    Article  Google Scholar 

  • Pereira GM, da Silva Caumo SE, Grandis A, Do Nascimento EQM, Correia AL, Barbosa HDMJ, Marcondes MA, Buckeridge MS, de Castro Vasconcellos P (2021) Physical and chemical characterization of the (2019) Physical and chemical characterization of the 2019 Black rain event in the Metropolitan Area of Sao Paulo, Brazil. Atmos Environ 248:118–229

    Article  Google Scholar 

  • Ponczek M, Franco MA, Carbone S, Rizzo LV, dos Santos DM, Morais FG, Duarte A, Barbosa HM, Artaxo P (2022) Linking the chemical composition and optical properties of biomass burning aerosols in Amazonia. Environ Sci: Atmos 2:252–269

    CAS  Google Scholar 

  • Prasad AK, Singh RP (2009) Validation of MODIS Terra, AIRS, NCEP/DOE AMIP-II Reanalysis-2, and AERONET Sun photometer derived integrated precipitable water vapor using ground-based GPS receivers over India. Journal of Geophysical Research: Atmospheres 114:D05107. https://doi.org/10.1029/2008JD011230

  • Reda I, Andreas A (2004) Solar position algorithm for solar radiation applications. Solar Energy 76:577–589

    Article  Google Scholar 

  • Ribeiro AG, Downward GS, de Freitas CU, Neto FC, Cardoso MRA, Hystad MDRD, Hystad P, Vermeulen R, Nardocci AC (2019) Incidence and mortality for respiratory cancer and traffic-related air pollution in São Paulo, Brazil. Environ Res 170:243–251

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley and Sons, Hoboken

    Google Scholar 

  • Smith C, Baker J, Spracklen D (2023) Tropical deforestation causes large reductions in observed precipitation. Nature 615(7951):270–275

  • Stafford B (2015) Stafford Brandon Pysolar documentation. https://doi.org/10.5281/zenodo.1461066, https://pysolar.readthedocs.io/

  • Tiwari S, Payra S, Mohan M, Verma S, Bisht DS (2011) Visibility degradation during foggy period due to anthropogenic urban aerosol at Delhi, India. Atmos Pollut Res 2:116–120

    Article  Google Scholar 

  • Wiedensohler A, Andrade M, Weinhold K, Müller T, Birmili W, Velarde F, Moreno I, Forno R, Sanchez M, Laj P et al (2018) Black carbon emission and transport mechanisms to the free troposphere at the La Paz/El Alto (Bolivia) metropolitan area based on the Day of Census (2012). Atmos Environ 194:158–169

    Article  CAS  Google Scholar 

  • Yang J, Hu M (2018) Filling the missing data gaps of daily MODIS AOD using spatiotemporal interpolation. Sci Total Environ 633:677–683

    Article  CAS  Google Scholar 

  • Zhao TX, Stowe LL, Smirnov A, Crosby D, Sapper J, McClain CR (2002) Development of a global validation package for satellite oceanic aerosol optical thickness retrieval based on AERONET observations and its application to NOAA/NESDIS operational aerosol retrievals. J Atmos Sci 59:294–312

    Article  Google Scholar 

Download references

Acknowledgements

MAF and MT acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo FAPESP, projects 2021/13610-8 and 2021/12954-5, respectively, for financial support. MAF acknowledges the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Universal project number 407752/2023-4 for financial support. Authors acknowledge the support of the Research Centre for Greenhouse Gas Innovation (RCGI), hosted by the University of São Paulo (USP) and sponsored by the São Paulo State Research Foundation (FAPESP) (grants 2014/50279-4 and 2020/15230-5) and Shell Brasil, and the strategic importance of the support given by Brazil’s National Oil, Natural Gas and Biofuels Agency (ANP) through the R &D levy regulation.

Funding

This article is funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (2021/13610- 8, 2021/12954-5, 2014/50279-4 and 2020/15230-5) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (07752/2023-4).

Author information

Authors and Affiliations

Authors

Contributions

MAF designed the study and wrote the paper. FGM, LVR, RP, RV, MT, LATM, and PA contributed to the data analysis. All authors contributed to the discussion of the results as well as the finalization of the manuscript.

Corresponding author

Correspondence to Marco A. Franco.

Ethics declarations

Conflict of interest

The authors declare that they have no known Conflict of interest that could have influenced the work reported in this paper.

Additional information

Responsible Editor: Clemens Simmer Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5486 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, M.A., Morais, F.G., Rizzo, L.V. et al. Aerosol optical depth and water vapor variability assessed through autocorrelation analysis. Meteorol Atmos Phys 136, 15 (2024). https://doi.org/10.1007/s00703-024-01011-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00703-024-01011-5

Navigation