Skip to main content

Advertisement

Log in

Assessment of the potential of CMIP6 models in simulating the sea surface temperature variability over the tropical Indian Ocean

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The ability of Coupled Model Inter-comparison Project phase 6 (CMIP6) in simulating the seasonal and interannual sea surface temperature (SST) variability is evaluated over the tropical Indian Ocean (IO). The historical simulations of eleven CMIP6 models are compared with the observations and standard reference data (Extended Reconstructed SST from 1950 to 2014 and the RAMA buoy) for evaluation purpose. Present analysis shows that most of the models exhibit warm SST bias over the equatorial IO in all seasons whereas MPI-ESM1-2-HAM and MPI-ESM1-2 LR exhibit cold SST bias over the entire IO in all seasons. Out of the 11 models, MPI-ESM1-2-HR, CanESM5, and IPSL-CM6A-LR show less bias over the western Arabian Sea compared to other models suggesting their better ability to capture the upwelling phenomena during the summer monsoon season which mainly drives the phytoplankton bloom over this region. Statistical analysis reveals that all the models perform reasonably well over the Arabian Sea and southern IO. The CanESM5 and IPSL-CM6A-LR perform better over the Bay of Bengal compared to all other models. The analysis of the leading modes of climate variability over the tropical IO suggests that the models are able to represent the Indian Ocean Basin mode more realistically than the Indian Ocean Dipole mode. The entire tropical IO exhibits a warming trend of about 0.018 °C/year estimated from the observation and a comparison shows that although all the models simulate this trend, the rate of warming simulated by CESM2-WACCM, CanESM5, and IPSL-CM6A-LR is close to the observed value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

All the datasets used in the present study are available in the public domain and the sources are mentioned in the acknowledgments.

Code availability

The codes used for the processing of data can be provided on request to the corresponding author.

References

  • Abram NJ, Gagan MK, Cole JE, Hantoro WS, Mudelsee M (2008) Recent intensification of tropical climate variability in the Indian Ocean. Nat Geosci 1(12):849–853

    Article  Google Scholar 

  • Alory G, Wijffels S, Meyers G (2007) Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys Res Lett 34(2):L02606

    Article  Google Scholar 

  • Ashok K, Guan Z, & Yamagata T (2003). Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys Res Lett 30(15).

  • Behera SK, Yamagata T (2001) Subtropical SST dipole events in the southern Indian Ocean. Geophys Res Lett 28(2):327–330

    Article  Google Scholar 

  • Behera SK, Luo JJ, Masson S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2005) Paramount impact of the Indian Ocean dipole on the East African short rains: a CGCM study. J Clim 18(21):4514–4530

    Article  Google Scholar 

  • Bentsen M, Oliviè DJ, Seland Ø, Toniazzo T, Gjermundsen A, Graff LS, Debernard JB, Gupta AK, He Y, Kirkevåg A, Schwinger J, Tjiputra J, Aas KS, Bethke I, Fan Y, Griesfeller J, Grini A, Guo C, Ilicak M, Karset IHH, Landgren OA, Liakka J, Moseid KO, Nummelin A, Spensberger C, Tang H, Zhang Z, Heinze C, Iversen T & Schulz M (2019). NCC NorESM2-MM model output prepared for CMIP6 CMIP historical, Earth Syst Grid Fed.

  • Boucher O, Denvil S, Levavasseur G, Cozic A, Caubel A, Foujols MA, Meurdesoif Y, Cadule P, Devilliers M, Ghattas J, Lebas N, Lurton T, Mellul L, Musat I, Mignot J, Cheruy F (2018). IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical. Earth Syst Grid Fed.

  • Bourlès B, Lumpkin R, McPhaden MJ, Hernandez F, Nobre P, Campos E, Yu L, Planton S, Busalacchi A, Moura AD, Servain J, Trotte J (2008) The PIRATA program: History, accomplishments, and future directions. Bull Am Meteorol Soc 89(8):1111–1126

    Article  Google Scholar 

  • Boyd PW, Doney SC (2002) Modelling regional responses by marine pelagic ecosystems to global climate change. Geophys Res Lett 29(16):53–51

    Article  Google Scholar 

  • Chowdary JS, Xie SP, Tokinaga H, Okumura YM, Kubota H, Johnson N, Zheng XT (2012) Interdecadal variations in ENSO teleconnection to the Indo–western Pacific for 1870–2007. J Clim 25(5):1722–1744

    Article  Google Scholar 

  • Chowdary JS, Bandgar AB, Gnanaseelan C, Luo JJ (2015) Role of tropical Indian Ocean air–sea interactions in modulating Indian summer monsoon in a coupled model. Atmos Sci Lett 16(2):170–176

    Article  Google Scholar 

  • Danabasoglu G. (2019a). NCAR CESM2 model output prepared for CMIP6 CMIP historical. Version, 20190912. Earth Syst Grid Fed.

  • Danabasoglu G (2019b). NCAR CESM2-FV2 model output prepared for CMIP6 CMIP historical. Version 20201101. Earth Syst Grid Fed.

  • Danabasoglu G (2019c). NCAR CESM2-WACCM model output prepared for CMIP6 CMIP historical. Version 20201101. Earth Syst Grid Fed.

  • Danabasoglu, G. (2019d). NCAR CESM2-WACCM-FV2 model output prepared for CMIP6 CMIP historical. Version 20201101. Earth System Grid Federation

  • Dong L, Zhou T (2014) The Indian Ocean sea surface temperature warming simulated by CMIP5 models during the twentieth century: competing forcing roles of GHGs and anthropogenic aerosols. J Clim 27(9):3348–3362

    Article  Google Scholar 

  • Dong L, Zhou T, Wu B (2014) Indian Ocean warming during 1958–2004 simulated by a climate system model and its mechanism. Clim Dyn 42(1-2):203–217

    Article  Google Scholar 

  • Du Y, Xie SP (2008) Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys Res Lett 35(8):L08712

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958

    Article  Google Scholar 

  • Feng M, McPhaden MJ, Xie SP, Hafner J (2013) La Niña forces unprecedented Leeuwin Current warming in 2011. Sci Rep 3(1):1–9

    Article  Google Scholar 

  • Guo F, Liu Q, Yang J, Fan L (2018) Three types of Indian Ocean basin modes. Clim Dyn 51(11):4357–4370

    Article  Google Scholar 

  • Halder S, Parekh A, Chowdary JS, Gnanaseelan C, Kulkarni A (2021) Assessment of CMIP6 models skill for Tropical Indian Ocean Sea Surface Temperature variability. Int J Climatol. 41(4):2568–2588

    Article  Google Scholar 

  • Han W, Meehl GA, Hu A, Alexander MA, Yamagata T, Yuan D, Ishii M, Pegion P, Zheng J, Hamlington BD, Quan XW, Leben RR (2014) Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim Dyn 43(5-6):1357–1379

    Article  Google Scholar 

  • Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20(6):337–344

    Article  Google Scholar 

  • Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips AS (2004) Twentieth century North Atlantic climate change. Part II: understanding the effect of Indian Ocean warming. Clim Dyn 23(3-4):391–405

    Article  Google Scholar 

  • Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, Menne MJ, Smith TM, Vose RS, Zhang HM (2017) Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J Clim 30(20):8179–8205

    Article  Google Scholar 

  • Ihara C, Kushnir Y, Cane MA (2008) Warming trend of the Indian Ocean SST and Indian Ocean dipole from 1880 to 2004. J Clim 21(10):2035–2046

    Article  Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

  • Jungclaus J, Bittner M, Wieners KH, Wachsmann F, Schupfner M, Legutke S, Giorgetta M, Reick C, Gayler V, Haak H, de Vrese P, Raddatz T, Esch M, Mauritsen T, von Storch Jin-S., Behrens J, Brovkin V, Claussen M, Crueger T, Fast I, Fiedler S, Hagemann S, Hohenegger C, Jahns T, Kloster S, Kinne S, Lasslop G, Kornblueh L, Marotzke J, Matei D, Meraner K, Mikolajewicz U, Modali K, Müller W, Nabel J, Notz D, Peters K, Pincus R, Pohlmann H, Pongratz J, Rast S, Schmidt H, Schnur R, Schulzweida U, Six K, Stevens B, Voigt A & Roeckner E (2019). MPIM MPI-ESM1. 2-HR model output prepared for CMIP6 CMIP historical, Version 20201101, Earth Syst Grid Fed.

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO:e for a tropical atmospheric bridge. J Clim 12(4):917–932

    Article  Google Scholar 

  • Kristensen E (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. In: In Life at interfaces and under extreme conditions. Springer, Dordrecht, pp 1–24

    Google Scholar 

  • Lau KM, Weng H (1999) Interannual, decadal–interdecadal, and global warming signals in sea surface temperature during 1955–97. J Clim 12(5):1257–1267

    Article  Google Scholar 

  • Luo JJ, Sasaki W, Masumoto Y (2012) Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci 109(46):18701–18706

    Article  Google Scholar 

  • Madhupratap M, Kumar SP, Bhattathiri PMA, Kumar MD, Raghukumar S, Nair KKC, Ramaiah N (1996) Mechanism of the biological response to winter cooling in the northeastern Arabian Sea. Nature 384(6609):549–552

    Article  Google Scholar 

  • McPhaden MJ, Busalacchi AJ, Cheney R, Donguy JR, Gage KS, Halpern D, Ji M, Julian P, Meyers G, Mitchum GT, Niiler PP, Picaut J, Reynolds RW, Smith N, Takeuchi K (1998) The Tropical Ocean-Global Atmosphere observing system: a decade of progress. J Geophys Res Oceans 103(C7):14169–14240

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JF, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394

    Article  Google Scholar 

  • Murtugudde R, McCreary JP Jr, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J Geophys Res Oceans 105(C2):3295–3306

    Article  Google Scholar 

  • Neubauer D, Ferrachat S, Siegenthaler-Le Drian C, Stoll J, Folini DS, Tegen I, Wieners KH, Mauritsen T, Stemmler I, Barthel S, Bey I, Daskalakis N, Heinold B, Kokkola H, Partridge D, Rast S, Schmidt H, Schutgens N, Stanelle T, Stier P, Watson-Parris D & Lohmann U. (2019). HAMMOZ-Consortium MPI-ESM1. 2-HAM model output prepared for CMIP6 CMIP historical, Version 20201101, Earth Syst Grid Fed.

  • Rao RR, Sivakumar R (1999) On the possible mechanisms of the evolution of a mini-warm pool during the pre-summer monsoon season and the genesis of onset vortex in the South-Eastern Arabian Sea. Q J R Meteorol Soc 125(555):787–809

    Article  Google Scholar 

  • Rao RR, Sivakumar R (2003) Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. J Geophys Res Oceans 108(C1):9–1

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110(5):354–384

    Article  Google Scholar 

  • Roxy MK, Modi A, Murtugudde R, Valsala V, Panickal S, Prasanna Kumar S, Ravichandran M, Vichi M, Lévy M (2016) A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys Res Lett 43(2):826–833

    Article  Google Scholar 

  • Ruijin H, Qinyu L, Xiangfeng M, Godfrey JS (2005) On the mechanism of the seasonal variability of SST in the tropical Indian Ocean. Adv Atmos Sci 22(3):451–462

    Article  Google Scholar 

  • Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean dipole mode events on global climate. Clim Res 25(2):151–169

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363

    Article  Google Scholar 

  • Saji NH, Xie SP, Yamagata T (2006) Tropical Indian Ocean variability in the IPCC twentieth-century climate simulations. J Clim 19(17):4397–4417

    Article  Google Scholar 

  • Sarma VVSS (2003). Monthly variability in surface pCO2 and net air-sea CO2 flux in the Arabian Sea. J Geophys Res: Oceans, 108(C8).

  • Schott FA, McCreary JP Jr (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51(1):1–123

    Article  Google Scholar 

  • Schott FA, Xie SP, & McCreary Jr JP (2009). Indian Ocean circulation and climate variability. Rev Geophys 47(1).

  • Seland, Ø., Bentsen, M., Oliviè, D. J. L., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J.B., Gupta, A.K., He, Y., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren OA, Liakka J, Moseid KO, Nummelin A, Spensberger C, Tang H, Zhang Z, Heinze C, Iversen T & Schulz M (2019). NCC NorESM2-LM model output prepared for CMIP6 CMIP historical, Earth Syst Grid Fed.

  • Sengupta D, Ravichandran M (2001) Oscillations of Bay of Bengal sea surface temperature during the 1998 summer monsoon. Geophys Res Lett 28(10):2033–2036

    Article  Google Scholar 

  • Sengupta D, Bharath Raj GN, & Shenoi SSC (2006). Surface freshwater from Bay of Bengal runoff and Indonesian throughflow in the tropical Indian Ocean. Geophys Res Lett 33(22).

  • Shenoi SSC, Shankar D, Shetye SR (2002) Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: implications for the summer monsoon. J Geophys Res Oceans 107(C6):5–1

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2003) Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J Clim 16(10):1495–1510

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Livezey RE, Stokes DC (1996) Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J Clim 9(6):1403–1420

    Article  Google Scholar 

  • Sun B, Li H, Zhou B (2019) Interdecadal variation of Indian Ocean basin mode and the impact on Asian summer climate. Geophys Res Lett 46(21):12388–12397

    Article  Google Scholar 

  • Swart NC, Cole JN, Kharin VV, Lazare M, Scinocca JF, Gillett NP, Anstey J, Arora V, Christian JR, Jiao Y, Lee WG, Majaess F, Saenko OA, Seiler C, Seinen C, Shao A, Solheim L, Von SK, Yang D, Winter B, Sigmond M (2019). CCCma CanESM5 model output prepared for CMIP6 CMIP historical. Version 20191230. Earth Syst Grid Fed.

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res-Atmos 106(D7):7183–7192

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20(17):4316–4340

    Article  Google Scholar 

  • Vinayachandran PN, Shetye SR (1991) The warm pool in the Indian Ocean. Proc Indian Acad Sci-Earth Planet Sci 100(2):165–175

    Article  Google Scholar 

  • Wang X, Li C, Zhou W (2006) Interdecadal variation of the relationship between Indian rainfall and SSTA modes in the Indian Ocean. Int J Climatol: J R Meteorol Soc 26(5):595–606

    Article  Google Scholar 

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401(6751):356–360

    Article  Google Scholar 

  • Wieners KH, Giorgetta M, Jungclaus J, Reick C, Esch M, Bittner M, Legutke S, Schupfner M, Wachsmann F, Gayler V, Haak H, De Vrese P, Raddatz T, Mauritsen T, von Storch J-S, Behrens J, Brovkin V, Claussen M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster S, Kinne S, Lasslop G, Kornblueh L, Marotzke J, Matei D, Meraner K, Mikolajewicz U, Modali K, Müller W, Nabel J, Notz D, Peters K, Pincus R, Pohlmann H, Pongratz J, Rast S, Schmidt H, Schnur R, Schulzweida U, Six K, Stevens B, Voigt A & Roeckner E (2019). MPI-M MPI-ESM1. 2-LR model output prepared for CMIP6 CMIP historical, Version 20200601. Earth System Grid Federation.

  • Yu L, Rienecker MM (1999) Mechanisms for the Indian Ocean warming during the 1997–98 El Nino. Geophys Res Lett 26(6):735–738

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Group Head MASD, Dean (A), and Director IIRS for providing support to carry out the present research. The ERSST data obtained from https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5 and the RAMA buoy SST data from https://www.pmel.noaa.gov/tao/drupal/disdel/ are gratefully acknowledged. The authors acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and the authors thank the climate modeling groups listed in Table 1 of this paper for producing and making available their model output (https://esgf-node.llnl.gov/search/cmip6/). The authors would like to thank the anonymous reviewers for their comments that helped to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Biswarup Bhattacharya: methodology, visualization, analysis, writing-original draft and editing. Sachiko Mohanty: conceptualization, methodology, analysis, writing-review and editing. Charu Singh: conceptualization, methodology, analysis, writing-review and editing.

Corresponding author

Correspondence to Sachiko Mohanty.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors consented to publish the paper.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, B., Mohanty, S. & Singh, C. Assessment of the potential of CMIP6 models in simulating the sea surface temperature variability over the tropical Indian Ocean. Theor Appl Climatol 148, 585–602 (2022). https://doi.org/10.1007/s00704-022-03952-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-022-03952-6

Navigation