Skip to main content

Advertisement

Log in

The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Temperature is one of the most important aspects of mountain climates. The relationships between air temperature and rockfalls at high-elevation sites are very important to know, but are also very difficult to study. In relation to this, a reliable method to estimate air temperatures at high-elevation sites is to apply the altitudinal temperature lapse rates (ATLR). The aims of this work are to quantify the values and the variability of the hourly ATLR and to apply this to estimated temperatures at high-elevation sites for rockfalls studies. To calculate ATLR prior the rockfalls, we used data acquired from two automatic weather stations that are located at an elevation above 2500 m. The sensors/instruments of these two stations are reliable because subjected to an accurate control and calibration once for year and the raw data have passed two automatic quality controls. Our study has yielded the following main results: (i) hourly ATLR increases slightly with increasing altitude, (ii) it is possible to estimate temperature at high-elevation sites with a good level of accuracy using ATLR, and (iii) temperature plays an important role on slope failures that occur at high-elevation sites and its importance is much more evident if the values oscillate around 0 °C with an amplitude of ±5 °C during the previous time-period. For these studies, it is not enough to improve the knowledge on air temperature, but it is necessary to develop an integrated knowledge of the thermal conditions of different materials involved in these processes (rock, debris, ice, water). Moreover, this integrated knowledge must be acquired by means of sensors and acquisition chains with known metrological traceability and uncertainty of measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acquaotta F, Fratianni S (2015) The importance of the quality and reliability of the historical time series for the study of climate change. Brazilian Journal of Climatology 14:20–38

    Google Scholar 

  • Acquaotta F, Fratianni S, Cassardo C, Cremonini R (2009) On the continuity and climatic variability of the meteorological stations in Turin, Asti, Vercelli and Oropa (piedmont, Italy). Meteorog Atmos Phys 103:279–287. doi:10.1007/s00703-008-0333-4

    Article  Google Scholar 

  • Acquaotta F, Fratianni S, Garzena D (2015) Temperature changes in the North-Western Italian Alps from 1961 to 2010. Theor Appl Climatol 122:619–634. doi:10.1007/s00704-014-1316-7

    Article  Google Scholar 

  • Aguilar E, Prohom M (2011) RClimDex-extraQC (EXTRAQC Quality Control Software). User Manual, Centre for Climate Change, University Rovira i Virgili, Tarragona, Spain

  • Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidelines on climate metadata and homogenization. WCDMP-No. 53. WMO-TD No 1186. World Meteorological Organization, Geneva

    Google Scholar 

  • Allen S, Huggel C (2013) Extremely warm temperatures as a potential cause of recent high mountain rockfall. Glob Planet Chang 107:59–69

    Article  Google Scholar 

  • AMS, American Meteorological Society (2016) Glossary of Meteorology, electronic version of the 2nd Edition, http://glossary.ametsoc.org. Accessed 22 Apr 2016

  • Barry RG (2008) Mountain weather and climate, 3rd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Barry RG (2012) Recent advances in mountain climate research. Theor Appl Climatol 110:549–553

    Article  Google Scholar 

  • Chiarle M, Coviello V, Arattano M, Silvestri P, Nigrelli G (2014) High elevation rock falls and their climatic control: a case study in the Conca di Cervinia (NW Italian Alps). In: Lollino et al. (eds.) “Engineering Geology for Society and Territory – Volume 1. 439–442. DOI 10.1007/978-3-319-09300-0_84

  • Chow FK, Snyder BJ, SFJ DW (2013) Mountain weather research and forecasting. Recent progress and current challenges. Springer, Dordrecht Heidelberg New York London

    Book  Google Scholar 

  • Diaz H, Bradley RS (1997) Temperature variations during the last century at high elevation sites. Clim Chang 36:253–279. doi:10.1007/978-94-015-8905-5_2

    Article  Google Scholar 

  • Dumas MD (2013) Changes in temperature and temperature gradients in the French Northern Alps during the last century. Theor Appl Climatol 111:223–233

    Article  Google Scholar 

  • EEA (2009) Regional climate change and adaptation. European Environment Agency, Report No. 9/2009

  • EEA (2012) Climate change, impacts and vulnerability in Europe 2012. European Environment Agency, Report No. 12/2012

  • Fang JY, Yoda K (1988) Climate and vegetation in China (I) changes in the altitudinal lapse rate of temperature and distribution of sea level temperature. Ecol Res 3:37–51. doi:10.1007/BF02348693

    Article  Google Scholar 

  • Fischer L, Purves RS, Huggel C, Noetzli J, Haeberli W (2012) On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas. Nat Hazards Earth Syst Sci 12(1):241–254. doi:10.5194/nhess-12-241-2012

    Article  Google Scholar 

  • Fischer L, Huggel C, Kääb A, Haeberli W (2013) Slope failures and erosion rates on a glacierized high-mountain face under climatic changes. Earth Surf Process 38:836–846. doi:10.1002/esp.3355

    Article  Google Scholar 

  • Fortin G, Acquaotta F, Fratianni S (2016) The evolution of temperature extremes in the Gaspé Peninsula, Quebec, Canada (1974–2013). Theor Appl Climatol. doi:10.1007/s00704-016-1859-x

    Google Scholar 

  • Fratianni S, Terzago S, Acquaotta F, Faletto M, Garzena D, Prola MC, Barbero S (2015) How snow and its physical properties change in a changing climate alpine context? Engineering geology for society and territory - volume 1. Springer, New York, pp 57–60. doi:10.1007/978-3-319-09300-0_11

    Google Scholar 

  • Giaccone E, Colombo N, Paro L, Acquaotta F, Fratianni S (2015) Climate variations in a high altitude alpine basin and their effects on glacial environment (Italian Western Alps). Atmósfera 28(2):117–128. doi:10.1016/S0187-6236(15)30004-7

    Article  Google Scholar 

  • Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) Twenty-first century climate change in the European Alps—a review. Sci Total Environ 493:1138–1151. doi:10.1016/j.scitotenv.2013.07.050

    Article  Google Scholar 

  • Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res 112:F2. doi:10.1029/2006JF000547

    Article  Google Scholar 

  • Gruber S, Hoelzle M, Haeberli W (2004) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophys Res Lett 31:4. doi:10.1029/2004gl020051

    Article  Google Scholar 

  • Harris C, Arenson LU, Christiansen HH, Etzelmüller B, Frauenfelder R, Gruber S et al (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth Sci Rev 92(3):117–171

    Article  Google Scholar 

  • HISTALP (2016) Historical Instrumental Climatological Surface Time Series of the Greater Alpine Region. Department of Climate Research, Central Institute for Meteorology and Geodynamics, Vienna. http://www.zamg.ac.at/histalp/. Accessed 22 Apr 2016

  • Huggel C, Salzmann N, Allen S, Caplan-Auerbach J, Fischer L, Haeberli W, Larsen C, Schneider D, Wessels R (2010) Recent and future warm extreme events and high-mountain slope stability. Philos Trans R Soc a-Math Phys Eng Sci 368:2435–2459. doi:10.1098/rsta.2010.0078

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Intergovernmental panel on climate change. Cambridge University Press

  • Kääb A, Chiarle M, Raup B, Schneider C (2007) Climate change impacts on mountain glaciers and permafrost. Glob Planet Change 56:vii–vix. doi:10.1016/j.gloplacha.2006.07.008

    Article  Google Scholar 

  • Kirchner M, Fauss-Kessler T, Jakobi G, Leuchner M, Ries L, Scheel HE, Suppan P (2013) Altitudinal temperature lapse rates in an alpine valley: trends and the influence of season and weather patterns. Int J Climatol 33:539–555. doi:10.1002/joc.3444

    Article  Google Scholar 

  • Kotlarski S, Bosshard T, Lüthi D, Pall P, Schär C (2012) Elevation gradients of European climate change in the regional climate model COSMO-CLM. Clim Chang 112:189–215. doi:10.1007/s10584-011-0195-5

    Article  Google Scholar 

  • Merlone A, Lopardo G, Sanna F, Bell S, Benyon R, Bergerud RA, Bertiglia F, Bojkovski J, Böse N, Brunet M, Cappella A, Coppa G, del Campo D, Dobre M, Drnovsek J, Ebert V, Emardson R, Fernicola V, Flakiewicz K, Gardiner T, Garcia-Izquierdo C, Georgin E, Gilabert A, Grykalowska A, Grudniewicz E, Heinonen M, Holmsten M, Hudoklin D, Johansson J, Kajastie H, Kaykisizli H, Klason P, Kňazovická L, Lakka A, Kowal A, Müller H, Musacchio C, Nwaboh J, Pavlasek P, Piccato A, Pitre L, de Podesta M, Rasmussen MK, Sairanen H, Smorgon D, Sparasci F, Strnad R, Szmyrka-Grzebyk A, Underwood R (2015) The MeteoMet project - metrology for meteorology: challenges and results. Met Apps 22:820–829. doi:10.1002/met.1528

    Article  Google Scholar 

  • Mountain Research Initiative EDW Working Group (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5(5):424–430

    Article  Google Scholar 

  • Nigrelli G, Lucchesi S, Bertotto S, Fioraso G, Chiarle M (2015) Climate variability and alpine glaciers evolution in northwestern Italy from the little ice age to the 2010s. Theor Appl Climatol 122(3):595–608. doi:10.1007/s00704-014-1313-x

    Article  Google Scholar 

  • Noetzli J, Hoelzle M, Haeberli W (2003) Mountain permafrost and recent alpine rock-fall events: a GISbased approach to determine critical factors. Permafrost 2:827–832

    Google Scholar 

  • Ohmura A (2012) Enhanced temperature variability in high-altitude climate change. Theor Appl Climatol 110:499–508

    Article  Google Scholar 

  • Paranunzio R, Laio F, Nigrelli G, Chiarle M (2015) A method to reveal climatic variables triggering slope failures at high elevation. Nat Hazards 76:1039–1061. doi:10.1007/s11069-014-1532-6

    Article  Google Scholar 

  • Paranunzio R, Laio F, Chiarle M, Nigrelli G, Guzzetti F (2016) Climate anomalies associated to the occurrence of rockfalls at high-elevation in the Italian Alps. Nat Hazards Earth Syst Sci 16(9):2085–2106. doi:10.5194/nhess-16-2085-2016

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. doi:10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Pepin NC, Seidel DJ (2005) A global comparison of surface and free-air temperatures at high elevations. J Geophys Res 110:1–15. doi:10.1029/2004JD005047

    Google Scholar 

  • Pepin N, Bradley RS, Diaz HF et al (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5:424–430. doi:10.1038/nclimate2563

    Article  Google Scholar 

  • Pogliotti P, Guglielmin M, Cremonese E, Morra di Cella U, Filippa G, Pellet C, Hauck C (2015) Warming permafrost and active layer variability at Cime Bianche, Western European Alps. Cryosphere 9:647–661. doi:10.5194/tc-9-647-2015

    Article  Google Scholar 

  • Rangwala I, Miller JR (2012) Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim Chang 114(3–4):527–547. doi:10.1007/s10584-012-0419-3

    Article  Google Scholar 

  • Rolland C (2003) Spatial and seasonal variations of air temperature lapse rates in alpine regions. J Clim 16:1032–1046

    Article  Google Scholar 

  • Stahr A, Langenscheidt E (2015) Landforms of High Mountains. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Tamburini A, Villa F, Fischer L, Hungr O, Chiarle M, Mortara G (2013) Slope instabilities in high-mountain rock walls. Recent events on the Monte Rosa east face (Macugnaga, NW Italy). In: C. Margottini et al. (eds.), Landslide Science and Practice, Vol. 3, DOI 10.1007/978-3-642-31310-3_44, Springer-Verlag Berlin Heidelberg, 327–332. Proceedings of the Second World Landslide Forum. Rome, 3–7 October 2011

  • Terzago S, Fratianni S, Cremonini R (2013) Winter precipitation in western Italian alps (1926-2010): trends and connections with the North Atlantic/Arctic oscillation. Meteor Atmos Phys 703:231–242. doi:10.1007/s00703-012-0231-7

    Google Scholar 

  • Trewin B (2010) Exposure, instrumentation, and observing practice effects on land temperature measurements. WIREs Climate Change 1:490–506. doi:10.1002/wcc.46

    Article  Google Scholar 

  • Troll C (1973) High mountain belts between the polar caps and the equator: their definition and lower limit. Arct Alp Res 5(3):A19–A27

    Google Scholar 

  • Turconi L, Kuman De S, Tropeano D, Savio D (2010) Slope failure and related processes in the Mt. Rocciamelone area (Cenischia Valley, Western Italian Alps). Geomorphology 114(3):115–128. doi:10.1016/j.geomorph.2009.06.012

    Article  Google Scholar 

  • Venema V, Mestre O, Aguilar E, Auer I, Guijarro JA, Domonkos P, Vertacnik G, Szentimrey T, Stepanek P, Zahradnicek P, Viarre J, Müller-Westermeier G, Lakatos M, Williams CN, Menne M, Lindau R, Rasol D, Rustemeier E, Kolokythas K, Marinova T, Andresen L, Acquaotta F, Fratianni S, Cheval S, Klancar M, Brunetti M, Gruber C, Prohom Duran M, Likso T, Esteban P, Brandsma T (2012) Benchmarking homogenization algorithms for monthly data. Clim Past 8:89–115. doi:10.5194/cp-8-89-2012

    Article  Google Scholar 

  • Wang Q, Fan X, Wang M (2014) Recent warming amplification over high elevation regions across the globe. Clim Dyn 43:87–101. doi:10.1007/s00382-013-1889-3

    Article  Google Scholar 

  • Weber S, Beutel J, Faillettaz J, Hasler A, Krautblatter M, Vieli A (2016) Quantifying irreversible movement in steep fractured bedrock permafrost at Matterhorn (CH). The Cryosphere Discuss. doi:10.5194/tc-2016-136

    Google Scholar 

  • WMO (2011) Guide to climatological practices. World Meteorological Organization, WMO-No. 100, Third edition, Geneva. https://www.wmo.int. Accessed 20 Dec 2015

  • WMO (2012) Guide to Meteorological Instruments and Methods of Observation, WMO-No. 8, 2008 edition, Update in 2010, Geneva. https://www.wmo.int. Accessed 20 Dec 2015

  • Zandt T, Fellmuth B, Gaiser C, Kuhn A, Merlone A, Moro F, Thiele-Krivoi B (2011) Capabilities for dielectric-constant gas thermometry in a special large-volume liquid-bath thermostat. Int J Thermophys 32(7–8):1355–1365

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Centro Funzionale della Regione Autonoma Valle d’Aosta, the ARPA Valle d’Aosta, and the Aeronautica Militare Italiana for temperature data. A special thanks to Dr. Veronica Davico for her contribution to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Nigrelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigrelli, G., Fratianni, S., Zampollo, A. et al. The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps. Theor Appl Climatol 131, 1479–1491 (2018). https://doi.org/10.1007/s00704-017-2066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2066-0

Navigation