Skip to main content

Advertisement

Log in

A method to reveal climatic variables triggering slope failures at high elevation

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The air temperature in the Alps has increased at a rate more than twice the global average in the last century, and a significant increase in the number of slope failures has also been documented, in particular in glacial and periglacial areas. Thus, the relationship between climatological forcing and processes of instability at high elevation is worth analyzing. We provide a simple, statistically based method aimed at identifying a relationship between climate factors and the triggering of geohazards. Our main idea is to compare the meteorological conditions at the time when the instability occurred with the typical conditions in the same place. Carrying out a straightforward analysis based on the use of the empirical distribution function, we are able to determine whether any of the meteorological variables had nonstandard values in the lead-up to the slope failure event, and thus to identify the variables that are likely to have acted as triggering factors for the slope failure. The method has been tested on five events in the glacial and periglacial areas of the Piedmont Alps (Northwestern Italy) occurring between 1989 and 2008. Out of these five case studies, our research shows that four can be attributed to climatic anomalies (rise of temperature and/or heavy precipitation). The results of this study may contribute to developing knowledge about the relationships between climatic variables and slope failures at high elevations, providing interesting insights into the expected impact of ongoing global warming on geohazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen S, Huggel C (2013) Extremely warm temperatures as a potential cause of recent high mountain rockfall. Glob Planet Change 107:59–69. doi:10.1016/j.gloplacha.2013.04.007

    Article  Google Scholar 

  • ARPA Piemonte Banca dati meteorologica (1990) http://www.arpa.piemonte.it/. Accessed 14 August 2013

  • Auer I, Bohm R, Jurkovic A et al (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46. doi:10.1002/joc.1377

    Article  Google Scholar 

  • Beniston M (2006) Mountain weather and climate: a general overview and a focus on climatic change in the Alps. Hydrobiologia 562:3–16. doi:10.1007/s10750-005-1802-0

    Article  Google Scholar 

  • Bovo S, Carenzo G, Cattaneo M, Debrando V, Faletto C, Gandino E (1990) La valanga di ghiaccio del Monviso—Il contributo delle reti di monitoraggio della Regione Piemonte nell’interpretazione dell’evento. Neve e Valanghe 11:6–13

    Google Scholar 

  • Brunetti M, Lentini G, Maugeri M, Nanni T, Auer I, Boehm R, Schoener W (2009) Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. Int J Climatol 29:2197–2225. doi:10.1002/joc.1857

    Article  Google Scholar 

  • Chiarle M, Mortara G (2008) Geomorphological impact of climate change on alpine glacial and periglacial areas. Examples of processes and description of research needs. In: Interpraevent 2008 conference proceedings, Dornbirn, vol 2, pp 111–122

  • Chiarle M, Iannotti S, Mortara G, Deline P (2007) Recent debris flow occurrences associated with glaciers in the Alps. Glob Planet Change 56:123–136

    Article  Google Scholar 

  • Chiarle M, Geertsema M, Mortara G, Clague JJ (2011) Impacts of climate change on debris flow occurrence in the cordillera of Western Canada and the European Alps. In: Genevois R, Hamilton DL, Prestininzi A (eds) Proceedings of the 5th international conference on debris-flow hazards mitigation, mechanics. Università La Sapienza, Roma, pp 45–52

    Google Scholar 

  • Chiarle M, Coviello V, Arattano M, Silvestri P, Nigrelli G (2015) High elevation rock falls and their climatic control: a case study in the Conca di Cervinia (NW Italian Alps). In: Lollino G, Manconi A, Clague J, Shan W, Chiarle M (eds) Engineering geology for society and territory, vol 1. Springer, Berlin, pp 439–442

    Chapter  Google Scholar 

  • Ciccarelli N, Von Hardenberg J, Provenzale A, Ronchi C, Vargiu A, Pelosini R (2008) Climate variability in north-western Italy during the second half of the 20th century. Glob Planet Change 63:185–195

    Article  Google Scholar 

  • Comitato Geografico Nazionale Italiano (1926) Nomi e limiti delle grandi parti del Sistema alpino. In: L’Universo—Anno VII N.9. Istituto Geografico Militare, Firenze

  • Coviello V, Chiarle M, Arattano M, Pogliotti P, Morra di Cella U (2015) Monitoring rock wall temperatures and microseismic activity for slope stability investigation at J.A. Carrel hut, Matterhorn. In: Lollino G, Manconi A, Clague J, Shan W, Chiarle M (eds) Engineering geology for society and territory, vol 1. Springer, Berlin, pp 305–309

    Chapter  Google Scholar 

  • Dutto F, Mortara G (1992) Rischi connessi con la dinamica glaciale nelle Alpi Italiane. Geografia Fisica Dinamica Quaternaria 15:85–92

    Google Scholar 

  • Dutto F, Godone F, Mortara G (1991) L’écroulement du glacier supérieur de Coolidge. (Paroi nord du Mont Viso, Alpes occidentales). Rev géographie Alp 79:7–18

    Article  Google Scholar 

  • Fischer L, Kääb A, Huggel C, Noetzli J (2006) Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face. Nat Hazards Earth Syst Sci 6:761–772

    Article  Google Scholar 

  • Fischer L, Amann F, Moore JR, Huggel C (2010) Assessment of periglacial slope stability for the 1988 Tschierva rock avalanche (Piz Morteratsch, Switzerland). Eng Geol 116:32–43. doi:10.1016/j.enggeo.2010.07.005

    Article  Google Scholar 

  • Fischer L, Eisenbeiss H, Kaab A, Huggel C, Haeberli W (2011) Monitoring topographic changes in a periglacial high-mountain face using high-resolution DTMs, Monte Rosa East Face, Italian Alps. Permafr Periglac Process 22:140–152. doi:10.1002/ppp.717

    Article  Google Scholar 

  • Fischer L, Huggel C, Kääb A, Haeberli W (2013) Slope failures and erosion rates on a glacierized high-mountain face under climatic changes. Earth Surf Process Landforms 38:836–846. doi:10.1002/esp.3355

    Article  Google Scholar 

  • Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res. doi:10.1029/2006JF000547

  • Gruber S, Hoelzle M, Haeberli W (2004) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophys Res Lett 31:4. doi:10.1029/2004gl020051

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5:3–17. doi:10.1007/s10346-007-0112-1

    Article  Google Scholar 

  • Haeberli W, Gärtner-Roer I, Hoelzle M, Paul F, Zemp M (2009) Glacier Mass Balance Bulletin No. 10 (2006–2007). World Glacier Monit. Serv., Zurich

  • Harris C, Arenson LU, Christiansen HH et al (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Sci Rev 92:117–171. doi:10.1016/j.earscirev.2008.12.002

    Article  Google Scholar 

  • Huggel C, Salzmann N, Allen S, Caplan-Auerbach J, Fischer L, Haeberli W, Larsen C, Schneider D, Wessels R (2010) Recent and future warm extreme events and high-mountain slope stability. Philos Trans R Soc a-Math Phys Eng Sci 368:2435–2459. doi:10.1098/rsta.2010.0078

    Article  Google Scholar 

  • Huggel C, Clague JJ, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Process Landforms 37:77–91. doi:10.1002/esp.2223

    Article  Google Scholar 

  • Jomelli V, Pech VP, Chochillon C, Brunstein D (2004) Geomorphic variations of debris flows and recent climatic change in the French Alps. Clim Change 64:77–102. doi:10.1023/b:clim.0000024700.35154.44

    Article  Google Scholar 

  • Jomelli V, Delval C, Grancher D, Escande S, Brunstein D, Hetu B, Filion L, Pech P (2007) Probabilistic analysis of recent snow avalanche activity and weather in the French Alps. Cold Reg Sci Technol 47:180–192. doi:10.1016/j.coldregions.2006.08.003

    Article  Google Scholar 

  • Kääb A, Huggel C, Barbero S, Chiarle M, Cordola M, Epifani F, Haeberli W, Mortara G, Semino P, Tamburini A, Viazzo G (2004) Glacier hazards at Belvedere Glacier and the Monte Rosa east face, Italian Alps: processes and mitigation. In: 10th congress interpraevent 2004, Riva del Garda, vol 1, pp 67–78

  • Kääb A, Chiarle M, Raup B, Schneider C (2007) Climate change impacts on mountain glaciers and permafrost. Glob Planet Change 56:vii–ix

  • Kirchner M, Faus-Kessler T, Jakobi G, Leuchner M, Ries L, Scheel HE, Suppan P (2013) Altitudinal temperature lapse rates in an Alpine valley: trends and the influence of season and weather patterns. Int J Climatol 33:539–555. doi:10.1002/joc.3444

    Article  Google Scholar 

  • Lucchesi S, Fioraso G, Bertotto S, Chiarle M (2014) Little Ice Age and contemporary glacier extent in the Western and South-Western Piedmont Alps (North-Western Italy). J Maps 10:409–423

  • Marchi L, Tecca PR (1996) Magnitudo delle colate detritiche nelle Alpi Orientali Italiane. Geoing Ambient e Mineraria 33:79–86

    Google Scholar 

  • McSaveney MJ (2002) Recent rockfalls and rock avalanches in Mount Cook national park, New Zealand. Rev Eng Geol 15:35–70

    Article  Google Scholar 

  • Mortara G, Giuliano M (2009) La colata detritica del 7 settembre 2008 nel bacino glaciale della Torre di Castelfranco. In: Mortara G, Tamburini A (eds) Il ghiacciaio del Belvedere e l’emergenza del lago Effimero. Edizioni Società Meteorologica Subalpina, Castello Borello, Bussoleno, pp 135–139

  • Mortara G, Palomba M (2009) Il Ghiacciaio Superiore di Coolidge (Monviso) a venti anni dal crollo del 6 luglio 1989. Nimbus 53–54:30–31

    Google Scholar 

  • Mortara G, Tamburini A (2009) Il ghiacciaio del Belvedere e l’emergenza del lago Effimero. Edizioni Società Meteorologica Subalpina, Castello Borello, Bussoleno

  • Mortara G, Dutto F, Godone F (1995) Effetti degli eventi alluvionali nell’ambiente proglaciale. La sovraincisione della morena del Ghiacciaio del Mulinet (Stura di Valgrande, Alpi Graie). Geogr Fis Dinam Quat 18:295–304

    Google Scholar 

  • Nigrelli G, Collimedaglia M (2012) Reconstruction and analysis of two long-term precipitation time series: Alpe Devero and Domodossola (Italian Western Alps). Theor Appl Climatol 109:397–405

    Article  Google Scholar 

  • Noetzli J, Hoelzle M, Haeberli W (2003) Mountain permafrost and recent Alpine rock-fall events: a GIS-based approach to determine critical factors. Permafrost 2:827–832

    Google Scholar 

  • Saez JL, Corona C, Stoffel M, Berger F (2013) Climate change increases frequency of shallow spring landslides in the French Alps. Geology 41:619–622

    Article  Google Scholar 

  • Stocker TF, Qin D, Platner GK (2013) Climate change 2013: the physical science basis work. Gr. I Contrib. to Fifth Assess. Rep. Intergov. Panel Clim. Chang. Summ. Policymakers (IPCC, 2013)

  • Tamburini A, Villa F, Fischer L, Hungr O, Chiarle M, Mortara G (2013) Slope instabilities in high-mountain rock walls. Recent Events on the Monte Rosa East Face (Macugnaga, NW Italy). Landslide Sci. Pract. Springer, Berlin, pp 327–332

  • Tarquini S, Isola I, Favalli M, Mazzarini F, Bisson M, Pareschi MT, Boschi E (2007) TINITALY/01: a new triangular irregular network of Italy. Ann Geophys 50:407–425

    Google Scholar 

  • Tarquini S, Vinci S, Favalli M, Doumaz F, Fornaciai A, Nannipieri L (2012) Release of a 10-m-resolution DEM for the Italian territory: comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Comput Geosci 38:168–170. doi:10.1016/j.cageo.2011.04.018

    Article  Google Scholar 

  • UIPO (1913-1994) Annali idrologici, Parte prima. Ufficio Idrografico del Po, Parma

  • World Meterological Organization (2011) Guide to climatological practices (WMO-No. 100), 3rd edn. Geneva, pp 180

  • Zemp M, Paul F, Hoelzle M, Haeberli W (2008) Glacier fluctuations in the European Alps, 1850–2000. Darkening Peaks Glacier: Glacier Retreat, Science, and Society 152

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Paranunzio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paranunzio, R., Laio, F., Nigrelli, G. et al. A method to reveal climatic variables triggering slope failures at high elevation. Nat Hazards 76, 1039–1061 (2015). https://doi.org/10.1007/s11069-014-1532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-014-1532-6

Keywords

Navigation