Skip to main content
Log in

A short note on the inclusion of sultriness issues in perceived temperature in mild climates

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Sultriness is a specific case in thermal perception under warm/humid environments and frequently applied in German operational weather forecast and is assumed if the dew-point temperature t d exceeds a threshold of 16.5 °C. In perceived temperature (PT), which is based on the ASHRAE two-node-model, a Central European climatology was prepared of the classical predicted mean vote (PMV), exclusively linked to thermal stress, and the so-called rational PMV* that additionally accounts for the humidity in the meteorological environment and is closely linked to thermal strain. The standard deviation of the difference ΔPMV = PMV* − PMV over PMV reveals a similarity to the appearance of sultriness that suggests as side effect of the PT parameterisation a thermophysiologically based definition of sultriness: “Under warm/humid conditions a subject adapted to mild climatologic conditions perceives sultriness if the actual value of ΔPMV exceeds the long-term mean by more than its single standard deviation”. This definition accounts for all environmental and subject related variables influencing the thermal state of the body and is in accordance with all in the literature described properties in the perception of sultriness. The two definitions coincide more or less at daylight hours for t d values markedly beyond the threshold. However, in the t d threshold region, the PT-derived definition offers stronger differentiated patterns and is significantly less frequent at nighttime than the mono-causal definition. For given PT values, the sensible heat flux via the skin shows an increase under a sultry environment, whereas the latent is reduced; skin and core temperatures as well as the skin blood flow are also less. In any case, PT-derived sultriness is linked with an increased thermal strain on the body temperatures, which is a measure of discomfort caused by increased humidity and/or dissatisfaction with the thermal environment. This confirms the thermal uncomfortable feeling accompanying the perception of sultriness. Therefore, the PT-derived sultriness can be presumed to be a more appropriate measure for the perception of sultriness, because it accounts for all environmental impacts on thermoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ASHRAE (2001) ASHRAE handbook: fundamentals, 8. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA, p. 29

    Google Scholar 

  • Assmann D (1963) Die Wetterfühligkeit des Menschen. VEB G, Fischer, Jena

    Google Scholar 

  • Castens G (1925) Über Tropenklimatologie, Tropenhygiene und den Lettow-Feldzug. Ann d Hydr LIII. Jahrg (VI):177–187

  • Damman W (1962) Die Schwüle als Klimafaktor. Jahrbuch der Technischen Hochschule Hannover 1960/62

  • Fanger PO (1972) Thermal comfort. Analysis and applications in environmental engineering. McGraw-Hill Company, pp. 244

  • Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429–441. doi:10.1007/s00484-011-0424-7

    Article  Google Scholar 

  • Flach E (1957): Grundbegriffe und Grundtatsachen der Bioklimatologie. In: Bartels J et al.. (ed.): Linkes Meteorologisches Taschenbuch, Neue Ausgabe, Bd. III

  • Gagge AP, Fobelets AP, Berglund PE (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731

    Google Scholar 

  • Hentschel G (1978) Das Bioklima des Menschen. VEB Verlag Volk und Gesundheit, Berlin

    Google Scholar 

  • Herrmann H (1959) Die Schwüle, eine vergleichende Untersuchung. Dissertation, Meteorol. Institut Uni Köln

  • Höppe P (1984) Die Energiebilanz des Menschen. Universität München—Meteorologisches Institut, Wissenschaftliche Mitteilungen Nr. 49, 194 pp

  • IUPS (2003) Glossary of terms for thermal physiology. 3rd Ed. Revised by the Commission for Thermal Physiology of the International Union of Physiological Sciences (IUPS thermal commission). J Thermal Biology 28:75–106

    Article  Google Scholar 

  • King E (1955) Ein empirisches Schwülemaß. Medizin-Meteorologische Hefte Nr. 10:5–8

    Google Scholar 

  • Knepple R (1948) Über die Ursachen der Schwüle. Z Meteorol 2(12):366–369

    Google Scholar 

  • Lancaster A (1898) De la manière d’utiliser les observations hygrométriques. V. Congr. International d’Hydrologie, Climatologie, Liège, pp. 261–271

    Google Scholar 

  • Leistner W (1951) Die hygienische und bioklimatische Bedeutung des Dampfdrucks in Innenräumen und die Behaglichkeits- und Schwülegrenze. Medizin-Meteorologische Hefte Nr 6:18–31

    Google Scholar 

  • Malchaire J, Piette A, Kampmann B, Mehnert P, Gebhard H, Havenith G, den Hartog E, Holmér I, Parsons K, Alfano G, Griefahn B (2001) Development and validation of the predicted heat strain model. Am occup Hyg 45(2):123–135

    Article  Google Scholar 

  • Parsons KC (2002) Environments. The effects of hot, moderate, and cold environments on human health, comfort and performance. Taylor & Francis London and New York, second edition, pp. 518

  • Rothfusz LP (1990) The heat index “equation” (or, more than you ever wanted to know about heat index). NWS Southern Region Technical Attachment, SR/SSD 90-23, Fort Worth, Texas, p. 2

    Google Scholar 

  • Scharlau K (1943) Die Schwüle als meßbare Größe. Bioklim Beibl 10:19–23

    Google Scholar 

  • Scharlau K (1950) Zur Einführung eines Schwülemass-Stabes und Abgrenzung von Schwülezone durch Isohygrothermen. Erdkunde Band IV Lfg 3/4:188–201

    Article  Google Scholar 

  • Schirmer H, Buschner W, Cappel A, Schlegel M (eds) (1987) Meyers Kleines Lexikon Meteorologie. Meyers Lexikonverlag, Mannheim, Wien, Zürich

    Google Scholar 

  • Spangenberg WW (1952) Untersuchungen zur Entstehung der Schwüle. Angewandte Meteorologie I 7:213–215

    Google Scholar 

  • Staiger H, Laschewski G, Grätz A (2012) The perceived temperature—a versatile index for the assessment of the human thermal environment. Part a: scientific basics. Int J Biometeorol 56:165–176. doi:10.1007/s00484-011-0409-6

    Article  Google Scholar 

  • Steadman RG (1979) The assessment of sultriness, part I. A temperature-humidity index based on human physiology and clothing science. J Appl Meteor 18:861–873

    Article  Google Scholar 

  • Steadman RG (1984) A universal scale of apparent temperature. J Climate and Appl Met 23:1674–1687

    Article  Google Scholar 

  • Stolwijk JAJ (1971) A mathematical model of physiological temperature regulation in man. NASA contractor report NASA CR-1855, pp. 82, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710023925_1971023925.pdf.

  • WMO (1992) International meteorological vocabulary. World Meteorological Organization, WMO-No. 182, pp. 784

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Staiger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staiger, H., Laschewski, G. & Matzarakis, A. A short note on the inclusion of sultriness issues in perceived temperature in mild climates. Theor Appl Climatol 131, 819–826 (2018). https://doi.org/10.1007/s00704-016-2013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-2013-5

Keywords

Navigation