Advertisement

Theoretical and Applied Climatology

, Volume 131, Issue 1–2, pp 271–284 | Cite as

Spatiotemporal patterns of drought at various time scales in Shandong Province of Eastern China

  • Depeng Zuo
  • Siyang Cai
  • Zongxue XuEmail author
  • Fulin Li
  • Wenchao Sun
  • Xiaojing Yang
  • Guangyuan Kan
  • Pin Liu
Original Paper

Abstract

The temporal variations and spatial patterns of drought in Shandong Province of Eastern China were investigated by calculating the standardized precipitation evapotranspiration index (SPEI) at 1-, 3-, 6-, 12-, and 24-month time scales. Monthly precipitation and air temperature time series during the period 1960–2012 were collected at 23 meteorological stations uniformly distributed over the region. The non-parametric Mann-Kendall test was used to explore the temporal trends of precipitation, air temperature, and the SPEI drought index. S-mode principal component analysis (PCA) was applied to identify the spatial patterns of drought. The results showed that an insignificant decreasing trend in annual total precipitation was detected at most stations, a significant increase of annual average air temperature occurred at all the 23 stations, and a significant decreasing trend in the SPEI was mainly detected at the coastal stations for all the time scales. The frequency of occurrence of extreme and severe drought at different time scales generally increased with decades; higher frequency and larger affected area of extreme and severe droughts occurred as the time scale increased, especially for the northwest of Shandong Province and Jiaodong peninsular. The spatial pattern of drought for SPEI-1 contains three regions: eastern Jiaodong Peninsular and northwestern and southern Shandong. As the time scale increased to 3, 6, and 12 months, the order of the three regions was transformed into another as northwestern Shandong, eastern Jiaodong Peninsular, and southern Shandong. For SPEI-24, the location identified by REOF1 was slightly shifted from northwestern Shandong to western Shandong, and REOF2 and REOF3 identified another two weak patterns in the south edge and north edge of Jiaodong Peninsular, respectively. The potential causes of drought and the impact of drought on agriculture in the study area have also been discussed. The temporal variations and spatial patterns of drought obtained in this study provide valuable information for water resources planning and drought disaster prevention and mitigation in Eastern China.

Notes

Acknowledgments

This study is jointly supported by the National Key Technologies R&D Program of China (Grant No. 2013BAC05B04); National Natural Science Foundation of China (Grant No. 51309010); Special Fund for Research on Public Interests (Grant No. 201401036); the Ministry of Water Resources, PR China; the International Science and Technology Cooperation Program of China (Grant No. 2012DFG22140); the Ministry of Science and Technology, PR China; Water Ecological Civilization Pilot Key Technology Research and Development Program (Grant No. SSTWMZCJH-SD02); Department of Water Resources of Shandong Province; and Shandong Province Finance Bureau, PR China.

References

  1. Borgomeo E, Pflug G, Hall JW, Hochrainer-Stigler S (2015) Assessing water resource system vulnerability to unprecedented hydrological drought using copulas to characterize drought duration and deficit. Water Resour Res 51(11):8927–8948. doi: 10.1002/2015WR017324 CrossRefGoogle Scholar
  2. Capra A, Scicolone B (2012) Spatiotemporal variability of drought on a short-medium time scale in the Calabria Region (Southern Italy). Theor Appl Climatol 110(3):471–488. doi: 10.1007/s00704-012-0720-0 CrossRefGoogle Scholar
  3. Dai AG (2011) Drought under global warming: a review. Wiley Interdisciplinary Reviews-Climate Change 2(1):45–65. doi: 10.1002/wcc.81 CrossRefGoogle Scholar
  4. Das PK, Dutta D, Sharma JR, Dadhwal VK (2016) Trends and behaviour of meteorological drought (1901–2008) over Indian region using standardized precipitation-evapotranspiration index. Int J Climatol 36(2):909–916. doi: 10.1002/joc.4392 CrossRefGoogle Scholar
  5. Di Lena B, Vergni L, Antenucci F, Todisco F, Mannocchi F (2014) Analysis of drought in the region of Abruzzo (Central Italy) by the standardized precipitation index. Theor Appl Climatol 115(1–2):41–52. doi: 10.1007/s00704-013-0876-2 CrossRefGoogle Scholar
  6. Du J, Fang J, Xu W, Shi P (2013a) Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stoch Env Res Risk A 27(2):377–387. doi: 10.1007/s00477-012-0589-6 CrossRefGoogle Scholar
  7. Du L, Tian Q, Yu T, Meng Q, Jancso T, Udvardy P, Huang Y (2013b) A comprehensive drought monitoring method integrating MODIS and TRMM data. Int J Appl Earth Obs Geoinf 23:245–253. doi: 10.1016/j.jag.2012.09.010 CrossRefGoogle Scholar
  8. Ehsanzadeh E, Ouarda T, Saley HM (2011) A simultaneous analysis of gradual and abrupt changes in Canadian low streamflows. Hydrol Process 25(5):727–739CrossRefGoogle Scholar
  9. Feng L, Li T, Yu W (2014) Cause of severe droughts in Southwest China during 1951-2010. Clim Dyn 43(7–8):2033–2042. doi: 10.1007/s00382-013-2026-z CrossRefGoogle Scholar
  10. Ganguli P, Reddy MJ (2014) Ensemble prediction of regional droughts using climate inputs and the SVM-copula approach. Hydrol Process 28(19):4989–5009. doi: 10.1002/hyp.9966 CrossRefGoogle Scholar
  11. Gao Z, Gao W, Chang N (2011) Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM plus images. Int J Appl Earth Obs Geoinf 13(3):495–503. doi: 10.1016/j.jag.2010.10.005 CrossRefGoogle Scholar
  12. Giles BD, Flocas AA (1984) Air temperature variations in Greece. Part 1. Persistence, trend, and fluctuations. J Climatol 4(5):531–539CrossRefGoogle Scholar
  13. Gocic M, Trajkovic S (2013) Analysis of precipitation and drought data in Serbia over the period 1980–2010. J Hydrol 494:32–42. doi: 10.1016/j.jhydrol.2013.04.044 CrossRefGoogle Scholar
  14. Gocic M, Trajkovic S (2014) Spatiotemporal characteristics of drought in Serbia. J Hydrol 510:110–123. doi: 10.1016/j.jhydrol.2013.12.030 CrossRefGoogle Scholar
  15. Gunda T, Hornberger GM, Gilligan JM (2016) Spatiotemporal patterns of agricultural drought in Sri Lanka: 1881–2010. Int J Climatol 36(2):563–575. doi: 10.1002/joc.4365 CrossRefGoogle Scholar
  16. Guttman NB (1998) Comparing the Palmer drought index and the standardized precipitation index. J Am Water Resour Assoc 34(1):113–121CrossRefGoogle Scholar
  17. Han L, Zhang Q, Ma P, Jia J, Wang J (2016) The spatial distribution characteristics of a comprehensive drought risk index in southwestern China and underlying causes. Theor Appl Climatol 124(3–4):517–528. doi: 10.1007/s00704-015-1432-z CrossRefGoogle Scholar
  18. Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resour Res 18(1):107–121CrossRefGoogle Scholar
  19. Jhajharia D, Shrivastava SK, Sarkar D, Sarkar S (2009) Temporal characteristics of pan evaporation trends under the humid conditions of northeast India. Agric For Meteorol 149(5):763–770. doi: 10.1016/j.agrformet.2008.10.024 CrossRefGoogle Scholar
  20. Kendall MG (1975) Rank correlation measures. Charles Griffin, London, p. 202Google Scholar
  21. Kumar S, Merwade V, Kam J, Thurner K (2009) Streamflow trends in Indiana: effects of long term persistence, precipitation and subsurface drains. J Hydrol 374(1–2):171–183CrossRefGoogle Scholar
  22. Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245–259CrossRefGoogle Scholar
  23. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales, Proceedings of the 8th Conference on Applied Climatology. American Meteorological Society, Anaheim, CA, pp. 179–184Google Scholar
  24. Mirabbasi R, Fakheri-Fard A, Dinpashoh Y (2012) Bivariate drought frequency analysis using the copula method. Theor Appl Climatol 108(1–2):191–206. doi: 10.1007/s00704-011-0524-7 CrossRefGoogle Scholar
  25. Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):204–216. doi: 10.1016/j.jhydrol.2010.07.012 Google Scholar
  26. Modarres R, Da Silva V (2007) Rainfall trends in arid and semi-arid regions of Iran. J Arid Environ 70(2):344–355. doi: 10.1016/j.jaridenv.2006.12.024 CrossRefGoogle Scholar
  27. Moeletsi ME, Walker S (2012) Assessment of agricultural drought using a simple water balance model in the Free State Province of South Africa. Theor Appl Climatol 108(3–4):425–450. doi: 10.1007/s00704-011-0540-7 CrossRefGoogle Scholar
  28. Myronidis D, Stathis D, Ioannou K, Fotakis D (2012) An integration of statistics temporal methods to track the effect of drought in a shallow Mediterranean Lake. Water Resour Manag 26(15):4587–4605. doi: 10.1007/s11269-012-0169-z CrossRefGoogle Scholar
  29. Naddeo V, Scannapieco D, Zarra T, Belgiorno V (2013) River water quality assessment: implementation of non-parametric tests for sampling frequency optimization. Land Use Policy 30(1):197–205. doi: 10.1016/j.landusepol.2012.03.013 CrossRefGoogle Scholar
  30. Palmer WC (1965) Meteorological drought. US Department of Commerce, Weather Bureau, Washington, DCGoogle Scholar
  31. Potop V, Boroneant C, Mozny M, Stepanek P, Skalak P (2014) Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theor Appl Climatol 115(3–4):563–581. doi: 10.1007/s00704-013-0908-y CrossRefGoogle Scholar
  32. Qian C, Zhou T (2014) Multidecadal variability of North China aridity and its relationship to PDO during 1900–2010. J Clim 27(3):1210–1222. doi: 10.1175/JCLI-D-13-00235.1 CrossRefGoogle Scholar
  33. Raziei T, Bordi I, Pereira LS (2013) Regional drought modes in Iran using the SPI: the effect of time scale and spatial resolution. Water Resour Manag 27(6SI):1661–1674. doi: 10.1007/s11269-012-0120-3 CrossRefGoogle Scholar
  34. Santos JF, Pulido-Calvo I, Portela MM (2010) Spatial and temporal variability of droughts in Portugal. Water Resour Res 46:W03503. doi: 10.1029/2009WR008071 CrossRefGoogle Scholar
  35. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389CrossRefGoogle Scholar
  36. Shamshirband S, Gocic M, Petkovic D, Javidnia H, Ab Hamid SH, Mansor Z, Qasem SN (2015) Clustering project management for drought regions determination: a case study in Serbia. Agric For Meteorol 200:57–65. doi: 10.1016/j.agrformet.2014.09.020 CrossRefGoogle Scholar
  37. Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491(7424):435–440. doi: 10.1038/nature11575 CrossRefGoogle Scholar
  38. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94. doi: 10.2307/210739 CrossRefGoogle Scholar
  39. Tosunoglu F, Can I (2016) Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey. Nat Hazards 82(3):1457–1477. doi: 10.1007/s11069-016-2253-9 CrossRefGoogle Scholar
  40. Vicente-Serrano SM, Begueria S, Lopez-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718. doi: 10.1175/2009JCLI2909.1 CrossRefGoogle Scholar
  41. Wang X, Hou X, Li Z, Wang Y (2014) Spatial and temporal characteristics of meteorological drought in Shandong Province, China, from 1961 to 2008. Adv Meteorol 2014:873593. doi: 10.1155/2014/873593 Google Scholar
  42. Wei K, Wang L (2013) Reexamination of the aridity conditions in arid northwestern China for the last decade. J Clim 26(23):9594–9602. doi: 10.1175/JCLI-D-12-00605.1 CrossRefGoogle Scholar
  43. Wilhite DA, Glantz MH (1985) Understanding: the drought phenomenon: the role of definitions. Water Int 10(3):111–120. doi: 10.1080/02508068508686328 CrossRefGoogle Scholar
  44. Wu H, Hayes MJ, Weiss A, Hu Q (2001) An evaluation of the standardized precipitation index, the China-Z index and the statistical Z-score. Int J Climatol 21(6):745–758. doi: 10.1002/joc.658 CrossRefGoogle Scholar
  45. Wu H, Hayes MJ, Wilhite DA, Svoboda MD (2005) The effect of the length of record on the standardized precipitation index calculation. Int J Climatol 25(4):505–520. doi: 10.1002/joc.1142 CrossRefGoogle Scholar
  46. Xiao M, Zhang Q, Singh VP, Liu L (2016) Transitional properties of droughts and related impacts of climate indices in the Pearl River basin, China. J Hydrol 534:397–406. doi: 10.1016/j.jhydrol.2016.01.012 CrossRefGoogle Scholar
  47. Xu G, Liu X, Qin D, Chen T, Sun W, An W, Wang W, Wu G, Zeng X, Ren J (2014) Drought history inferred from tree ring delta C-13 and delta O-18 in the central Tianshan Mountains of China and linkage with the North Atlantic Oscillation. Theor Appl Climatol 116(3–4):385–401. doi: 10.1007/s00704-013-0958-1 CrossRefGoogle Scholar
  48. Xu K, Yang D, Yang H, Li Z, Qin Y, Shen Y (2015) Spatio-temporal variation of drought in China during 1961–2012: a climatic perspective. J Hydrol 526(SI):253–264. doi: 10.1016/j.jhydrol.2014.09.047 CrossRefGoogle Scholar
  49. Zhai J, Su B, Krysanova V, Vetter T, Gao C, Jiang T (2010) Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J Clim 23(3):649–663. doi: 10.1175/2009JCLI2968.1 CrossRefGoogle Scholar
  50. Zhang Q, Sun P, Li J, Singh VP, Liu J (2015b) Spatiotemporal properties of droughts and related impacts on agriculture in Xinjiang, China. Int J Climatol 35(7):1254–1266. doi: 10.1002/joc.4052 CrossRefGoogle Scholar
  51. Zhang Q, Sun P, Li J, Xiao M, Singh VP (2015a) Assessment of drought vulnerability of the Tarim River basin, Xinjiang, China. Theor Appl Climatol 121(1–2):337–347. doi: 10.1007/s00704-014-1234-8 CrossRefGoogle Scholar
  52. Zhang Q, Xiao M, Singh VP, Chen X (2013) Copula-based risk evaluation of droughts across the Pearl River basin, China. Theor Appl Climatol 111(1–2):119–131. doi: 10.1007/s00704-012-0656-4 CrossRefGoogle Scholar
  53. Zhang Q, Xu C, Zhang Z (2009) Observed changes of drought/wetness episodes in the Pearl River basin, China, using the standardized precipitation index and aridity index. Theor Appl Climatol 98(1–2):89–99. doi: 10.1007/s00704-008-0095-4 CrossRefGoogle Scholar
  54. Zou XK, Zhai PM, Zhang Q (2005) Variations in droughts over China: 1951–2003. Geophys Res Lett 32:L047074. doi: 10.1029/2004GL021853 Google Scholar
  55. Zuo DP, Xu ZX, Wu W, Zhao J, Zhao FF (2014) Identification of streamflow response to climate change and human activities in the Wei River Basin, China. Water Resour Manag 28(3):833–851. doi: 10.1007/s11269-014-0519-0 CrossRefGoogle Scholar
  56. Zuo DP, Xu ZX, Yang H, Liu XC (2012) Spatiotemporal variations and abrupt changes of potential evapotranspiration and its sensitivity to key meteorological variables in the Wei River basin, China. Hydrol Process 26(8):1149–1160. doi: 10.1002/hyp.8206 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Depeng Zuo
    • 1
    • 2
  • Siyang Cai
    • 1
  • Zongxue Xu
    • 1
    • 2
    Email author
  • Fulin Li
    • 3
  • Wenchao Sun
    • 1
    • 2
  • Xiaojing Yang
    • 1
  • Guangyuan Kan
    • 4
  • Pin Liu
    • 1
  1. 1.College of Water SciencesBeijing Normal UniversityBeijingChina
  2. 2.Joint Center for Global Change StudiesBeijingChina
  3. 3.Water Conservancy Research Institute of Shandong ProvinceJinanChina
  4. 4.Research Center on Flood and Drought Disaster Reduction of the Ministry of Water ResourcesChina Institute of Water Resources and Hydropower ResearchBeijingChina

Personalised recommendations