Skip to main content

Advertisement

Log in

Mean climate and representation of jet streams in the CORDEX South Asia simulations by the regional climate model RCA4

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

A number of simulations with the fourth release of the Rossby Center Regional Climate Model (RCA4) conducted within the COordinated Regional climate Downscaling EXperiment (CORDEX) framework for South Asia at 50 km horizontal resolution are evaluated for mean winter (December–March) and summer (June–September) climate during 1980–2005. The two driving data sets ERA-Interim reanalysis and the general circulation model EC-Earth have been analyzed besides the RCA4 simulations to address the added value. RCA4 successfully captures the mean climate in both the seasons. The biases in RCA4 appear to come from the driving data sets which are amplified after downscaling. The jet streams influencing the seasonal precipitation variability in both seasons are also analyzed. The spatial and quantitative analysis over CORDEX South Asia generally revealed the ability of RCA4 to capture the mean seasonal climate as well as the position and strength of the jet streams despite weak/strong jet representation in the driving data. The EC-Earth downscaled with RCA4 exhibited cold biases over the domain and a weak Somali jet over the Arabian Sea. Moreover, the moisture transport from the Arabian Sea during summer is pronounced in RCA4 simulations resulting in enhanced monsoon rainfall over northwestern parts of India. Both the Somali jet and the tropical easterly jet become stronger during strong summer monsoon years. However, there is robust impact of wet years in summer over the Somali jet. Wet-minus-dry composites in winter indicate strengthening (weakening) of the subtropical jet in RCA4 run by ERA-Interim (EC-Earth). The driving data have clear reflections on the RCA4 simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abish B, Joseph PV, Johannessen OM (2013) Weakening trend of the tropical easterly jet stream of the boreal summer monsoon season 1950-2009. J Clim 26:9408–9414. doi:10.1175/JCLI-D-13-00440.1

    Article  Google Scholar 

  • Abish B, Joseph PV, Johannessen OM (2014) Climate change in the subtropical jetstream during 1950–2009. Adv Atmos Sci 32:140–148. doi:10.1007/s00376-014-4156-6

    Article  Google Scholar 

  • Adam JC (2003) Adjustment of global gridded precipitation for systematic bias. J Geophys Res 108:4257. doi:10.1029/2002JD002499

    Article  Google Scholar 

  • Ajayamohan RS, Merryfield WJ, Kharin VV (2010) Increasing trend of synoptic activity and its relationship with extreme Rain Events over Central India. J Clim 23:1004–1013. doi:10.1175/2009JCLI2918.1

    Article  Google Scholar 

  • Archer CL, Caldeira K (2008) Historical trends in the jet streams. Geophys Res Lett 35:L08803. doi:10.1029/2008GL033614

    Google Scholar 

  • Bluestein HB (1992) Synoptic–Dynamic Meteorology in Midlatitudes. Oxford University Press, UK

  • Bunkar AF (1965) Interaction of summer monsoon air with the Arabian Sea. In: Proc. Symp. on Met. Results, IIOE, Bombay. Bombay, India, pp 3–16

  • Cadet D, Reverdin G (1981) Water vapour transport over the Indian Ocean during summer 1975. Tellus A 33:476–487. doi:10.3402/tellusa.v33i5.10737

    Article  Google Scholar 

  • Dash SK, Mishra SK, Pattnayak KC, et al. (2014a) Projected seasonal mean summer monsoon over India and adjoining regions for the twenty-first century. Theor Appl Climatol 122:581–593. doi:10.1007/s00704-014-1310-0

    Article  Google Scholar 

  • Dash SK, Pattnayak KC, Panda SK, et al. (2014b) Impact of domain size on the simulation of Indian summer monsoon in RegCM4 using mixed convection scheme and driven by HadGEM2. Clim Dyn 44:961–975. doi:10.1007/s00382-014-2420-1

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, et al. (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Desai BN, Rangachari N, Subramanian SK (1976) Structure of low-level jet stream over the Arabian Sea and the peninsula as revealed by observations in June and July during the monsoon experiment (MONEX) 1973 and its probable origin. Indian J Meteorol Hydrol Geophys 27:263–274

    Google Scholar 

  • Dimri AP, Mohanty UC (2009) Simulation of mesoscale features associated with intense western disturbances over Western Himalayas. Meteorol Appl 16:289–308. doi:10.1002/met.117

    Article  Google Scholar 

  • Dube SK, Luther ME, O’Brien JJ (1990) Relationships between interannual variability in the Arabian Sea and Indian summer monsoon rainfall. Meteorog Atmos Phys 44:153–165. doi:10.1007/BF01026816

    Article  Google Scholar 

  • Elguindi N, Giorgi F, Turuncoglu U (2013) Assessment of CMIP5 global model simulations over the subset of CORDEX domains used in the phase I CREMA. Clim Chang 125:7–21. doi:10.1007/s10584-013-0935-9

    Article  Google Scholar 

  • Endris HS, Omondi P, Jain S, et al. (2013) Assessment of the performance of CORDEX regional climate models in simulating East African rainfall. J Clim 26:8453–8475. doi:10.1175/JCLI-D-12-00708.1

    Article  Google Scholar 

  • Findlater J (1966) Cross-equatorial jet streams at low level over Kenya. Meteorol Mag 95:353–364

  • Galvin JFP (2007) The weather and climate of the tropics part 1-setting the scene. Weather 62:245–251. doi:10.1002/wea.53

    Article  Google Scholar 

  • Ghimire S, Choudhary A, Dimri AP (2015) Assessment of the performance of CORDEX-South Asia experiments for monsoonal precipitation over the Himalayan region during present climate: part I. Clim Dyn. doi:10.1007/s00382-015-2747-2

    Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. doi:10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. Bull-World Meteorol Organ 58:175–183

    Google Scholar 

  • Halpern D, Woiceshyn PM (2001) Somali jet in the Arabian Sea, El Ni??o, and India rainfall. J Clim 14:434–441. doi:10.1175/1520-0442(2001)014<0434:SJITAS>2.0.CO;2

    Article  Google Scholar 

  • Hassan M, Du P, Jia S, et al. (2015) An assessment of the South Asian Summer Monsoon Variability for present and future climatologies using a high resolution regional climate model (RegCM4.3) under the AR5 scenarios. Atmosphere (Basel) 6:1833–1857. doi:10.3390/atmos6111833

    Article  Google Scholar 

  • Hatwar HR, Yadav BP, Rama Rao YV (2005) Prediction of western disturbances and associated weather over western Himalayas. Curr Sci 88:913–920

    Google Scholar 

  • Hazeleger W, Wang X, Severijns C, et al. (2011) EC-earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39:2611–2629. doi:10.1007/s00382-011-1228-5

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, et al (2001) Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge and New York

  • IPCC, Stocker T, Qin D, et al (2013) The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

  • Iqbal W, Rasul G (2011) Downscaling ability of PRECIS over snow-covered areas of Pakistan. Pak J Meteorol 14(7):45–51

    Google Scholar 

  • Jacob D, Bärring L, Christensen OB, et al. (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Chang 81:31–52. doi:10.1007/s10584-006-9213-4

    Article  Google Scholar 

  • Jones CG, Wyser K, Ullerstig A, Willén U (2004) The Rossby Centre regional atmospheric climate model part II: application to the Arctic climate. Ambio 33:211–220

    Article  Google Scholar 

  • Joseph PV, Sijikumar S (2004) Intraseasonal variability of the low-level jet stream of the Asian summer monsoon. J Clim 17:1449–1458

    Article  Google Scholar 

  • Joseph PV, Simon A (2005) Weakening trend of the southwest monsoon current through peninsular India from 1950 to the present. Curr Sci 89:687–694

    Google Scholar 

  • Kalapureddy MCR, Rao DN, Jain AR, Ohno Y (2007) Wind profiler observations of a monsoon low-level jet over a tropical Indian station. Ann Geophys 25:2125–2137. doi:10.5194/angeo-25-2125-2007

    Article  Google Scholar 

  • Kriezi EE, Broman B (2008) Past and future wave climate in the Baltic Sea produced by the SWAN model with forcing from the regional climate model RCA of the Rossby Centre. In: 2008 IEEE/OES US/EU-Baltic International Symposium. IEEE, pp 1–7

  • Krishnakumar KN, Prasada Rao GSLHV, Gopakumar CS (2009) Rainfall trends in twentieth century over Kerala, India. Atmos Environ 43:1940–1944. doi:10.1016/j.atmosenv.2008.12.053

    Article  Google Scholar 

  • Krishnamurti TN (1961) The subtropical jet stream of winter. J Meteorol 18:172–191. doi:10.1175/1520-0469(1961)

    Article  Google Scholar 

  • Liang X-Z, Kunkel KE, Samel AN (2001) Development of a regional climate model for U.S. Midwest Applications. Part I: sensitivity to Buffer Zone Treatment. J Clim 14:4363–4378. doi:10.1175/1520-0442(2001)

    Article  Google Scholar 

  • Maharana P, Dimri AP (2015) Study of intraseasonal variability of Indian summer monsoon using a regional climate model. Clim Dyn. doi:10.1007/s00382-015-2631-0

    Google Scholar 

  • Mishra V, Kumar D, Ganguly AR, et al. (2014) Reliability of regional and global climate models to simulate precipitation extremes over India. J Geophys Res Atmos 119:9301–9323. doi:10.1002/2014JD021636

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Mokashi RY (1974) The Axis of the tropical easterly jet stream over India and Ceylon. Indian J Meteorol Geophys 25:55–68

    Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, et al. (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  Google Scholar 

  • Pant GB, Kumar KR (1997) Climates of South Asia. J. Wiley and Sons (Chichester)

  • Rao BRS, Rao DVB, Rao VB (2004) Decreasing trend in the strength of tropical easterly jet during the Asian summer monsoon season and the number of tropical cyclonic systems over Bay of Bengal. Geophys Res Lett 31:L14103. doi:10.1029/2004GL019817

    Article  Google Scholar 

  • Rummukainen M (2010) State-of-the-art with regional climate models. Wiley Interdiscip Rev Clim Chang 1:82–96. doi:10.1002/wcc.8

    Article  Google Scholar 

  • Rummukainen M, Räisänen J, Bringfelt B, et al. (2001) A regional climate model for Northern Europe: model description and results from the downscaling of two GCM control simulations. Clim Dyn 17:339–359. doi:10.1007/s003820000109

    Article  Google Scholar 

  • Samuelsson P, Jones CG, Willén U, et al. (2011) The Rossby Centre regional climate model RCA3: model description and performance. Tellus, Ser A Dyn Meteorol Oceanogr 63:4–23. doi:10.1111/j.1600-0870.2010.00478.x

    Article  Google Scholar 

  • Sandeep S, Ajayamohan RS (2014) Poleward shift in Indian summer monsoon low level jetstream under global warming. Clim Dyn. doi:10.1007/s00382-014-2261-y

    Google Scholar 

  • Sinha P, Mohanty UC, Kar SC, Kumari S (2013) Role of the Himalayan Orography in Simulation of the Indian Summer Monsoon using RegCM3. Pure Appl Geophys 171:1385–1407. doi:10.1007/s00024-013-0675-9

    Article  Google Scholar 

  • Strandberg G, Kjellström E, Poska A, et al. (2014) Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation. Clim Past 10:661–680. doi:10.5194/cp-10-661-2014

    Article  Google Scholar 

  • G Strandberg, L Bärring, U Hansson, C Jansson, C Jones, E Kjellström, M Kolax, M Kupiainen, G Nikulin, et al (2015) CORDEX Scenarios for Europe from the Rossby Centre Regional Climate Model RCA4

  • Suh M, Oh S (2015) Impacts of boundary conditions on the simulation of atmospheric fields using RegCM4 over CORDEX east Asia. Atmosphere (Basel) 6:783–804. doi:10.3390/atmos6060783

    Article  Google Scholar 

  • Syed FS, Giorgi F, Pal JS, et al. (2006) Effect of remote forcings on the winter precipitation of central southwest Asia part 1: observations. Theor Appl Climatol 86:147–160

  • Syed FS, Yoo JH, Körnich H, Kucharski F (2010) Are intraseasonal summer rainfall events micro monsoon onsets over the western edge of the South-Asian monsoon? Atmos Res 88:341–346

  • Syed FS, Körnich H, Tjernström M (2012) On the fog variability over South Asia. Clim Dyn 39:2993–3005. doi:10.1007/s00382-012-1414-0

    Article  Google Scholar 

  • Syed FS, Iqbal W, Syed AAB, Rasul G (2014) Uncertainties in the regional climate models simulations of South-Asian summer monsoon and climate change. Clim Dyn 42:2079–2097. doi:10.1007/s00382-013-1963-x

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183. doi:10.1029/2000JD900719

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tiwari PR, Kar SC, Mohanty UC, et al. (2015) Simulations of tropical circulation and Winter Precipitation Over North India: an application of a tropical band version of regional climate model (RegT-band). Pure Appl Geophys. doi:10.1007/s00024-015-1102-1

    Google Scholar 

  • Tourigny E, Jones C (2009) An analysis of regional climate model performance over the tropical Americas. Part I : simulating seasonal variability of precipitation associated with ENSO forcing. Tellus. Ser. A. Dyn Meteorol Oceanogr 61:323–342

    Article  Google Scholar 

  • Undén P, Rontu L, Järvinen H, et al. (2002) HIRLAM-5 scientific documentation. Environ Geol 43:144. doi:10.1007/s00254-002-0712-y

    Google Scholar 

  • Yang H, Wang B (2011) Reduction of systematic biases in regional climate downscaling through ensemble forcing. Clim Dyn 38:655–665. doi:10.1007/s00382-011-1006-4

    Article  Google Scholar 

Download references

Acknowledgments

Two anonymous reviewers provided constructive comments that helped to improve this manuscript. The South Asia CORDEX simulations were accomplished within the IMPACT2C project with funding from the European Union’s seventh Framework Program (FP7/2007-2013) under grant agreement 282746.We acknowledge the EC-Earth consortium for providing boundary conditions to RCA4. The EC-Earth simulations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the National Supercomputing Centre (SNC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Iqbal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, W., Syed, F.S., Sajjad, H. et al. Mean climate and representation of jet streams in the CORDEX South Asia simulations by the regional climate model RCA4. Theor Appl Climatol 129, 1–19 (2017). https://doi.org/10.1007/s00704-016-1755-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1755-4

Keywords

Navigation