Skip to main content

Advertisement

Log in

Global biogeophysical interactions between historical deforestation and climate through land surface albedo and interactive ocean

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Deforestation is expanding and accelerating into the remaining areas of undisturbed forest, and the quality of the remaining forests is declining today. Assessing the climatic impacts of deforestation can help to rectify this alarming situation. In this paper, how historical deforestation may affect global climate through interactive ocean and surface albedo is examined using an Earth system model of intermediate complexity (EMIC). Control and anomaly integrations are performed for 1000 years. In the anomaly case, cropland is significantly expanded since AD 1700. The response of climate in deforested areas is not uniform between the regions. In the background of a global cooling of 0.08 °C occurring with cooler surface air above 0.4 °C across 30° N to 75° N from March to September, the surface albedo increase has a global cooling effect in response to global-scale replacement of forests by cropland, especially over northern mid-high latitudes. The northern mid-latitude (30° N–60° N) suffers a prominent cooling in June, suggesting that this area is most sensitive to cropland expansion through surface albedo. Most regions show a consistent trend between the overall cooling in response to historical deforestation and its resulting cooling due to surface albedo anomaly. Furthermore, the effect of the interactive ocean on shaping the climate response to deforestation is greater than that of prescribed SSTs in most years with a maximum spread of 0.05 °C. This difference is more prominent after year 1800 than that before due to the more marked deforestation. These findings show the importance of the land cover change and the land surface albedo, stressing the necessity to analyze other biogeophysical processes of deforestation using interactive ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abiodun BJ, Adeyewa ZD, Oguntunde PG, Salami AT, Ajayi VO (2012) Modeling the impacts of reforestation on future climate in West Africa. Theor Appl Climatol 110:77–96

    Article  Google Scholar 

  • Bertrand C, Loutre MF, Crucifix M, Berger A (2002) Climate of the last millennium: a sensitivity study. Tellus Ser A Dyn Meteorol Oceanogr 54:221–244

    Article  Google Scholar 

  • Betts RA (2001) Biogeophysical impacts of land use on present-day climate: near-surface temperature change and radiative forcing. Atmos Sci Lett 2:39–51

    Article  Google Scholar 

  • Bonan GB (1997) Effects of land use on the climate of the United States. Clim Chang 37:449–486

    Article  Google Scholar 

  • Bonan GB (1999) Frost followed the plow: impacts of deforestation on the climate of the United States. Ecol Appl 9:1305–1315

    Article  Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Article  Google Scholar 

  • Bounoua L, Collatz GJ, Randall D (2000) Sensitivity of climate to changes in NDVI. J Clim 13:2277

    Article  Google Scholar 

  • Bounoua L, DeFries R, Collatz GJ, Sellers P, Khan H (2002) Effects of land cover conversion on surface climate. Clim Chang 52:29–64

    Article  Google Scholar 

  • Brovkin V, Ganopolski A, Claussen M, Kubatzki C, Petoukhov V (1999) Modelling climate response to historical land cover change. Glob Ecol Biogeogr 8:509–517

    Article  Google Scholar 

  • Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Glob Biogeochem Cycles 16(4):1139. doi:10.1029/2001GB001662

    Article  Google Scholar 

  • Brovkin V, Levis S, Loutre MF, Crucifix M, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V (2003) Stability analysis of the climate vegetation system in the northern high latitudes. Clim Chang 57(1–2):119–138

    Article  Google Scholar 

  • Brovkin V, Claussen M, Driesschaert E, Fichefet T, Kicklighter D, Loutre MF, Matthews HD, Ramankutty N, Schaeffer M, Sokolov A (2006) Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim Dyn 26:587–600

    Article  Google Scholar 

  • Brovkin V, Raddatz T, Reick CH, Claussen M, Gayler V (2009) Global biogeophysical interactions between forest and climate. Geophys Res Lett 36:L07405. doi:10.1029/2009GL037543

    Article  Google Scholar 

  • Brovkin V, Boysen L, Arora VK, Boisier JP, Cadule P, Chini L, Claussen M, Friedlingstein P, Gayler V, van den Hurk BJJM, Hurtt GC, Jones CD, Kato E, de Noblet-Ducoudré N, Pacifico F, Pongratz J, Weiss M (2013) Effect of anthropogenic land-use and land cover changes on climate and land carbon storage in CMIP5 projections for the 21st century. J Clim 26:6859–6881

    Article  Google Scholar 

  • Chase TN, Pielke RA, Kittel TGF, Nemani RR, Running SW (2000) Simulated impacts of historical land cover changes on global climate in northern winter. Clim Dyn 16:93–105

    Article  Google Scholar 

  • Claussen M, Brovkin V, Ganopolski A (2001) Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys Res Lett 28:1011–1014

    Article  Google Scholar 

  • Dallmeyer A, Clauseen M (2011) The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate. Biogeosciences 8:1499–1519

    Article  Google Scholar 

  • Davin EL, de Noblet-Ducoudré N (2010) Climatic impact of global-scale deforestation: radiative versus nonradiative processes. J Clim 23:97–112

    Article  Google Scholar 

  • De Fries RS, Bounoua L, Collatz GJ (2002) Human modification of the landscape and surface climate in the next fifty years. Glob Chang Biol 8:438–458

    Article  Google Scholar 

  • de Noblet-Ducoudre N, Boisier J-P, Pitman A, Bonan GB, Brovkin V, Cruz F, Delire C, Gayler V, van den Hurk BJJM, Lawrence PJ, van der Molen MK, Müller C, Reick CH, Strengers BJ, Voldoire A (2012) Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: results from the first set of LUCID experiments. J Clim 25:3261–3281

    Article  Google Scholar 

  • Fanning AF, Weaver AJ (1996) An atmospheric energy–moisture balance model: climatology, interpentadal climate change, and coupling to an ocean general circulation model. J Geophys Res 101:15111–15128

    Article  Google Scholar 

  • Feddema J, Oleson K, Bonan G, Mearns L, Washington W, Meehl G, Nychka D (2005) A comparison of a GCM response to historical anthropogenic land cover change and model sensitivity to uncertainty in present–day land cover representations. Clim Dyn 25:581–609

    Article  Google Scholar 

  • Gallee H, van Ypersele JP, Fichefet T, Tricot C, Berger AL (1992) Simulation of the last glacial cycle by a coupled 2-D climate-ice sheet model. Part 2: response to insolation and CO2. J Geophys Res 97:15713–15740

    Article  Google Scholar 

  • Ganopolski A, Petoukhov V, Rahmstorf S, Brovkin V, Claussen M, Eliseev A, Kubatzki C (2001) CLIMBER-2: a climate system model of intermediate complexity. Part II: model sensitivity. Clim Dyn 17:735–751

    Article  Google Scholar 

  • Henderson-Sellers A, Dickinson RE, Durbidge TB, Kennedy PJ, Mcguffie K, Pitman AJ (1993) Tropical deforestation—modeling local-scale to regional-scale climate change. J Geophys Res 98:7289–7315

    Article  Google Scholar 

  • Hibler WD III (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846

    Article  Google Scholar 

  • IPCC. 2013. Working group 1 contribution to the IPCC fifth assessment report climate change 2013: the physical science basis

  • Klein Goldewijk K (2005) Three centuries of global population growth: a spatial referenced population density database for 1700–2000. Popul Environ 26(5):343–367

    Article  Google Scholar 

  • Klein Goldewijk K, Beusen A, van Drecht G, de Vos M (2011) The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob Ecol Biogeogr 20:73–86

    Article  Google Scholar 

  • Lawrence PJ, Chase TN (2010) Investigating the climate impacts of global land cover change in the community climate system model (CCSM 3.0). Int J Climatol 30(13):2066–2087

    Article  Google Scholar 

  • Lawrence PJ, Feddema JJ, Bonan GB, Meehl GA, O’Neill BC, Levis S, Lawrence DM, Oleson KW, Kluzek E, Lindsay K, Thornton PE (2012) Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the community climate system model (CCSM4) from 1850 to 2100. J Clim 25:3071–3095

    Article  Google Scholar 

  • Ledley TS (1991) The climatic response to meridional sea-ice transport. J Clim 4:147–163

    Article  Google Scholar 

  • Ma D, Notaro M, Liu Z, Chen G, Liu Y (2012) Simulated impacts of afforestation in East China monsoon region as modulated by ocean variability. Clim Dyn 41(9–10):2439–2450

    Google Scholar 

  • Manabe S (1969) Climate and the ocean circulation. I: The atmospheric circulation and the hydrology of the earth surface. Mon Weather Rev 97:739–774

    Article  Google Scholar 

  • Matthews HD, Weaver AJ, Meissner KJ, Gillett NP, Eby M (2004) Natural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Clim Dyn 22:461–479

    Article  Google Scholar 

  • Myhre G, Myhre A (2003) Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes. J Clim 16:1511–1524

    Article  Google Scholar 

  • Oleson KW, Bonan GB, Levis S, Vertenstein M (2004) Effects of land use change on North American climate: impact of surface datasets and model biogeophysics. Clim Dyn 23:117–132

    Article  Google Scholar 

  • Pitman AJ, de Noblet-Ducoudré N, Cruz FT, Davin EL, Bonan GB, Brovkin V, Claussen M, Delire C, Ganzeveld L, Gayler V, van den Hurk BJJM, Lawrence PJ, van der Molen MK, Muller C, Reick CH, Seneviratne SI, Strengers BJ, Voldoire A (2009) Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys Res Lett 36:L14814. doi:10.1029/2009GL039076

    Article  Google Scholar 

  • Polcher J, Laval K (1993) The impact of African and Amazonian deforestation on tropical climate. J Hydrol 155:389–405

    Article  Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob Biogeochem Cycles 13:997–1027

    Article  Google Scholar 

  • Semtner AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of the climate. J Phys Oceanogr 6:379–389

    Article  Google Scholar 

  • Snyder PK, Delire C, Foley JA (2004) Evaluating the influence of different vegetation biomes on the global climate. Clim Dyn 23:279–302

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL, Chen Z, Eds. (2007) Climate change 2007: the physical science basis. Cambridge University Press, 996 pp

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  Google Scholar 

  • Wang Z, Mysak LA (2000) A simple coupled atmosphere–ocean-sea ice-land surface model for climate and paleoclimate studies. J Clim 13:1150–1172

    Article  Google Scholar 

  • Wang Z, Mysak LA (2001) Ice sheet-thermohaline circulation interactions in a climate model of intermediate complexity. J Oceanogr 57:481–494

    Article  Google Scholar 

  • Wang Y, Mysak LA, Wang Z, Brovkin V (2005a) The greening of the McGill Paleoclimate Model. Part II: Simulation of Holocene millennial-scale natural climate changes. Clim Dyn 24:481–496

    Article  Google Scholar 

  • Wang Y, Mysak LA, Roulet NT (2005b) Holocene climate and carbon cycle dynamics: experiments with the “green” McGill Paleoclimate Model. Glob Biogeochem Cycles 19:GB3022. doi:10.1029/2005GB002484

    Article  Google Scholar 

  • Wang Y, Mysak LA, Wang Z, Brovkin V (2005c) The greening of the McGill Paleoclimate Model. Part I: improved land surface scheme with vegetation dynamics. Clim Dyn 24:469–480

    Article  Google Scholar 

  • Wang Y, Yan X, Wang Z (2014) The biogeophysical effects of extreme afforestation in modeling future climate. Theor Appl Climatol. doi:10.1007/s00704-013-1085-8

    Google Scholar 

  • Wright DG, Stocker TF (1991) A zonally averaged ocean model for the thermohaline circulation. Part I: model development and flow dynamics. J Phys Oceanogr 21:1713–1724

    Article  Google Scholar 

  • Zhang X, Zwiers FW, Heger GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth century precipitation trends. Nature 448(7152):461–464

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation-Youth Science Fund Project (Grant No. 41305055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y. Global biogeophysical interactions between historical deforestation and climate through land surface albedo and interactive ocean. Theor Appl Climatol 127, 769–777 (2017). https://doi.org/10.1007/s00704-015-1665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1665-x

Keywords

Navigation