Skip to main content

Advertisement

Log in

The greening of the McGill Paleoclimate Model. Part II: Simulation of Holocene millennial-scale natural climate changes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Various proxy data reveal that in many regions of the Northern Hemisphere (NH), the middle Holocene (6 kyr BP) was warmer than the early Holocene (8 kyr BP) as well as the later Holocene, up to the end of the pre-industrial period (1800 AD). This pattern of warming and then cooling in the NH represents the response of the climate system to changes in orbital forcing, vegetation cover and the Laurentide Ice Sheet (LIS) during the Holocene. In an attempt to better understand these changes in the climate system, the McGill Paleoclimate Model (MPM) has been coupled to the dynamic global vegetation model known as VECODE (see Part I of this two-part paper), and a number of sensitivity experiments have been performed with the “green” MPM. The model results illustrate the following: (1) the orbital forcing together with the vegetation—albedo feedback result in the gradual cooling of global SAT from about 6 kyr BP to the end of the pre-industrial period; (2) the disappearance of the LIS over the period 8–6 kyr BP, associated with vegetation—albedo feedback, allows the global SAT to increase and reach its maximum at around 6 kyr BP; (3) the northern limit of the boreal forest moves northward during the period 8–6.4 kyr BP due to the LIS retreat; (4) during the period 6.4–0 kyr BP, the northern limit of the boreal forest moves southward about 120 km in response to the decreasing summer insolation in the NH; and (5) the desertification of northern Africa during the period 8–2.6 kyr BP is mainly explained by the decreasing summer monsoon precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. In Wang and Mysak (2002), the atmospheric variables such as SAT, surface specific humidity, and precipitation are downscaled to 5°×5° in the region 30°N to 75°N

  2. Thermal gradient is defined as the SAT in the Sahara minus the SAT in tropical Atlantic

References

  • COHMAP (1988) Climatic changes of the last 18,000 years: observations and model simulations. Science 241:1043–1052

    Google Scholar 

  • TEMPO (1996) Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: a case study at 6000 years BP. Global Biogeochem Cy 10(4):727–736

    Google Scholar 

  • Anderson PM, Brubaker LB (1994) Vegetation history of northcentral Alaska: a mapped summary of Late-Quaternary pollen data. Quaternary Sci Rev 13:71–92

    Article  Google Scholar 

  • Barber DC et al (1999) Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400:344–348

    Article  CAS  Google Scholar 

  • Bard E, Hamelin B, Fairbanks RG, Zindler A (1990) Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals. Nature 345:405–410

    Google Scholar 

  • Bauer E, Ganopolski A, Montoya M (2004) Simulation of the cold climate event 8,200 years ago by meltwater outburst from Lake Agassiz. Paleoceanography 19: PA3014; doi:10.1029/2004PA001030

  • Berger AL (1978) Long-term variations of daily insolation and Quaternary climatic changes. J Atmos Sci 35:2362–2367

    Article  Google Scholar 

  • Bigelow NH et al (2003) Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. J Geophys Res 108(D19): 8170; doi:10.1029/2002JD002558

    Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Article  Google Scholar 

  • Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation and climate dynamics in the Holocene: experiments with the CLIMBER-2 Model. Global Biogeochem Cy 16(4):1139; doi:10.1029/2001GB001662

    Google Scholar 

  • Brovkin V, Levis S, Loutre M-F, Crucifix M, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V (2003) Stability analysis of the climate-vegetation system in the northern high latitudes. Climatic Change 57(1):119-138

    Article  Google Scholar 

  • Charney J, Stone PH, Quirk WJ (1975) Drought in Sahara-biogeophysical feedback mechanism. Science 187:434–435

    Google Scholar 

  • Charney J, Quirk WJ, Chow SH, Kornfield J (1977) A comparative study of the effects of albedo change on drought in semi-arid regions. J Atmos Sci 34:1366–1385

    Article  Google Scholar 

  • Claussen M, Kubatzki C, Brovkin V, Ganopolski A, Hoelzmann P, Pachur HJ (1999) Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys Res Lett 24(14):2037–2040

    Article  Google Scholar 

  • Crucifix M, Loutre MF, Tulkens P, Fichefet T, Berger A (2002) Climate evolution during the Holocene: a study with an Earth system model of intermediate complexity. Clim Dyn 19:43–60

    Article  Google Scholar 

  • Davydova NN, Delusina IV, Subetto DA (1992) Boltshezemeltskaya tundra. In: Davydova NN (ed) Istoriya ozer Tostochno-Evropeiskoi Ravniny Nauka, St. Petersburg, pp 34–45

  • deMenocal P, Ortiz J, Guilderson T, Sarnthein M (2000a) Coherent high- and low-latitude climate variability during the Holocene warm period. Science 288:2198–2202

    Article  Google Scholar 

  • deMenocal P, Ortiz J, Guilderson T, Adkins J, Sarnthein M, Baker L, Yarusinski M (2000b) Abrupt onset and termination of the African humid period: rapid climate response to gradual insolation forcing. Quaternary Sci Rev 19:341–361

    Google Scholar 

  • Dyke AS, Prest VK (1986) Late Wisconsinan and Holocene retreat of the Laurentide Ice Sheet. Geological Survey of Canada, Map 1702A, 1:5,000,000

  • Dyke AS, Prest VK (1987) Late Wisconsinan and Holocene history of the Laurentide Ice Sheet. Geogr Phys Quatern 41:237–264

    Google Scholar 

  • Edwards ME, Barker ED (1994) Climate and vegetation in northeastern Alaska 18,000 yr BP. Palaeogeogr Palaeoclim Palaeoecol 109:127–135

    Article  Google Scholar 

  • Enzel Y et al (1999) High-resolution Holocene environmental changes in the Thar desert, northwestern India. Science 284:125–128

    Article  Google Scholar 

  • Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642

    Article  Google Scholar 

  • Ganopolski A, Kubatzki C, Claussen M, Brovkin V, Petoukhov V (1998) The influence of vegetation-atmosphere-ocean interaction on climate during the mid-Holocene. Science 280:1916–1919

    Article  CAS  PubMed  Google Scholar 

  • Gasse F (2000) Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Sci Rev 19:189–211

    Article  Google Scholar 

  • Grootes PM, Stuiver M, White JWC, Johnsen S, Jouzel J (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552–554

    Article  CAS  Google Scholar 

  • Hall NMJ, Valdes PJ (1997) A GCM simulation of the climate 6000 years ago. J Climate 10:3–17

    Article  Google Scholar 

  • Harvey LDD (1988) On the role of high latitude ice, snow and vegetation feedbacks in the climatic response to external forcing changes. Climatic Change 13:191–224

    Article  Google Scholar 

  • Hoelzmann P, Jolly D, Harrison SP, Laarif F, Bonnefille R, Pachur HJ (1998) Mid-Holocene land-surface conditions in northern Africa and the Arabian Peninsula: a data set for the analysis of biogeophysical feedbacks in the climate system. Global Biogeochem Cy 12:35–52

    Article  CAS  Google Scholar 

  • Hu FS et al (1999) Abrupt changes in North American climate during early Holocene times. Nature 400:437–440

    Google Scholar 

  • Joos F, Gerber S, Prentice IC, Otto-Bliesner BL, Valdes PJ (2004) Transient simulation of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochem Cy 18; doi:10.1029/2003GB002156

  • Kutzbach JE (1981) Monsoon climate of the early Holocene: climatic experiment using the Earth’s orbital parameters for 9000 years ago. Science 214:59–61

    Google Scholar 

  • Kutzbach JE, Liu Z (1997) Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278:440–443

    Article  Google Scholar 

  • Kutzbach JE, Otto-Bliesner BL (1982) The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000  years B.P. in a low-resolution general circulation model. J Atmos Sci 39(6):1177–1188

    Article  Google Scholar 

  • Kutzbach J, Bonan G, Foley J, Harrison SP (1996) Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature 384:623–626

    Article  CAS  Google Scholar 

  • Lamb HF, Edwards ME (1988) The Arctic. In: Huntley B, Webb T III (eds) Vegetation history. Kluwer, Dordrecht, pp 519–555

    Google Scholar 

  • Levitus S (1982) Climatological Atlas of the World Ocean. Technical report, NOAA Professional Paper 13US Government Printing Office, Washington, DC

  • Liu Z, Otto-Bliesner B, Kutzbach J, Li L, Shields C (2003) Coupled climate simulation of the evolution of global monsoons in the Holocene. J Climate 16:2472–2490

    Article  Google Scholar 

  • MacDonald GM et al (2000) Holocene treeline history and climate change across Northern Eurasia. Quaternary Res 53:302–311; doi:10.1006/qres.1999.2123

    Google Scholar 

  • Mitchell J, Grahame N, Needham K (1988) Climate simulation for 9000  years before present: seasonal variations and effect of the Laurentide Ice Sheet. J Geophys Res 93(D7):8283–8303

    Google Scholar 

  • de Noblet N, Braconnot P, Joussaume S, Masson V (1996) Sensitivity of simulated Asian and African summer monsoons to orbitally induced variations in insolation 126, 115 and 6 kBP. Clim Dyn 12:589–603

    Article  Google Scholar 

  • Paterson WSB (1972) Laurentide Ice Sheet: estimated volumes during Late Wisconsin. Rev Geophys Space Phys 10:885–917

    Google Scholar 

  • Pollard D, Bergengren J, Stillwell-Soller L, Felzer B, Thompson S (1998) Climate simulations for 10000 and 6000 years BP using the GENESIS global climate model. Palaeoclimates 2:183–218

    Google Scholar 

  • Prentice IC, Jolly D et al (2000) Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J Biogeogr 27:507–519

    Google Scholar 

  • Prentice IC, Webb T (1998) BIOME 6000: reconstructing global mid-Holocene vegetation patterns from palaeoecological records. J Biogeogr 25:997–1005

    Article  Google Scholar 

  • Prentice IC, Guiot J, Huntley B, Jolly D, Cheddadi R (1996) Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim Dyn 12:185–194

    Article  Google Scholar 

  • Renssen H, Goosse H, Fichefet T, Campin JM (2001) The 8.2 kyr BP event simulated by a global atmosphere-sea-ice-ocean model. Geophys Res Lett 28(8):1567–1570

    Article  Google Scholar 

  • Renssen H, Brovkin V, Fichefet T, Goosse H (2003) Holocene climate instability during the termination of the African Humid Period Geophys Res Lett 30(4):1184; doi:10.1029/2002GL016636

    Google Scholar 

  • Richard PJH (1995) Le couvert végétatal du Québec-Labrador il ya 6000 ans BP: Essai. Geogr Phys Quatern 49:117–140

    Google Scholar 

  • Ricketts RD et al (2001) The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeogr Palaeocl Palaeoecol 176:207–227

    Article  Google Scholar 

  • Ritchie JC (1987) The postglacial vegetation of Canada. Cambridge University Press, New York, 187 pp

  • Ritchie JC, MacDonald GM (1986) The patterns of post-glacial spread of white spruce. J Biogeogr 132:527–540

    Google Scholar 

  • Ruddiman WF (2000) Earth’s climate: past and future. W.H. Freeman and Company, New York

    Google Scholar 

  • Staubwasser M, Sirocko F, Grootes PM, Segl M (2003) Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys Res Lett 30(8):1425; doi:10.1029/2002GL016822

    Google Scholar 

  • Street-Perrott FA (1979) Late Quaternary precipitation estimates for the Ziway-Shala Basin, Southern Ethiopia. Palaeoecol Africa 11:135–143

    Google Scholar 

  • Street-Perrott FA, Grove AT (1979) Global maps of lake-level fluctuations since 30,000 yr BP. Quaternary Res 12:83–118

    Article  Google Scholar 

  • Street-Perrott FA, Perrott RA (1993) Holocene vegetation lake levels and climate of Africa. In: Wright HE et al (eds) Global climates since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, pp 318–356

    Google Scholar 

  • Texier D, de Noblet N, Harrison S, Haxeltine A, Jolly D, Joussaume S, Laarif F, Prentice IC, Tarasov P (1997) Quantifying the role of biosphere-atmosphere feedbacks in climate change: coupled model simulations for 6000 years BP and comparison with palaeodata for northern Eurasia and northern Africa. Clim Dyn 13:865–882

    Article  Google Scholar 

  • Thompson LG et al (2002) Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 298:589–593

    Article  Google Scholar 

  • Velichko AA, Andreev AA, Klimanov VA (1997) Climate and vegetation dynamics in the tundra and forest zone during the late glacial and Holocene. Quatern Int 41/42:71–96

    Article  Google Scholar 

  • Wang Z, Mysak LA (2000) A simple coupled atmosphere-ocean-sea ice-land surface model for climate and paleoclimate studies. J Climate 13:1150–1172

    Article  Google Scholar 

  • Wang Z, Mysak LA (2002) Simulation of the last glacial inception and rapid ice sheet growth in the McGill paleoclimate model. Geophys Res Lett 29(23): 2102; doi:10.1029/2002GL015120

    Google Scholar 

  • Wang Y, Mysak LA, Wang Z, Brovkin V (2005) The greening of the McGill Paleoclimate Model. Part I: improved land surface scheme with vegetation dynamics. Clim Dyn (in press)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Project Grant from CFCAS and a Discovery Grant from NSERC of Canada awarded to L.A.M. We appreciate the helpful discussions we had with Drs. Thomas F. Pedersen, Thomas C. Johnson, and Garry Clarke throughout the course of this work. We thank COHMAP and TEMPO members for providing intercomparison vegetation data. The Laurentide Ice Sheet data were kindly provided by Dr. Arthur S. Dyke from the Geological Survey of Canada. The comments of the three anonymous referees which helped to improve this paper, and the editorial assistance of Rebekah Kipp are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Mysak, L.A., Wang, Z. et al. The greening of the McGill Paleoclimate Model. Part II: Simulation of Holocene millennial-scale natural climate changes. Clim Dyn 24, 481–496 (2005). https://doi.org/10.1007/s00382-004-0516-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-004-0516-8

Keywords

Navigation