Skip to main content
Log in

A comparison of two photosynthesis parameterization schemes for an alpine meadow site on the Qinghai-Tibetan Plateau

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Photosynthesis is a very important sub-process in the carbon cycle and is a crucial sub-modular function in carbon cycle models. In this study, two typical photosynthesis parameterization schemes were compared based on meteorological and eddy covariance (EC) observations at an alpine meadow site. The photosynthesis model parameters were estimated using the Markov Chain Monte Carlo (MCMC) method. The results indicated that the Farquhar-conductance coupled model better predicted the gross primary production (GPP) for the alpine meadow ecosystem at an hourly time scale than the light use efficiency (LUE) model even though the Farquhar-conductance coupled model has a lower computational efficiency than the LUE model. Compared to the Ball–Woodrow–Berry (BWB) stomatal conductance model, coupling the Farquhar model with the Leuning stomatal conductance model more accurately simulated GPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Anderson MC, Norman JM, Meyers TP, Diak GR (2000) An analytical model for estimating canopy transpiration and carbon assimilation fluxes based on canopy light-use efficiency. Agric For Meteorol 101:265–289

    Article  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens J (ed) Progress in Photosynthesis Research, vol.IV. Martinus-Nijhoff Publishers, Dordrecht, The Netherlands, pp. 221–224

    Chapter  Google Scholar 

  • Cowan I (1978) Stomatal behaviour and environment. Adv Bot Res 4:117–228

    Article  Google Scholar 

  • Drolet G, Middleton E, Huemmrich K, Hall F, Amiro B, Barr A, Black T, McCaughey J, Margolis H (2008) Regional mapping of gross light-use efficiency using MODIS spectral indices. Remote Sens Environ 112:3064–3078

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (2001) Models of photosynthesis. Plant Physiol 125:42–45

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  Google Scholar 

  • Gelman A., Rubin D.B. (1992). Inference from iterative simulation using multiple sequences. Stat Sci 457-472

  • Hastings WK (1970) Monte Carlo Sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  • Janzen HH (2004) Carbon cycling in earth systems—a soil science perspective. Agric Ecosyst Environ 104:399–417

    Article  Google Scholar 

  • Keenan TF, Carbone MS, Reichstein M, Richardson AD (2011) The model-data fusion pitfall: assuming certainty in an uncertain world. Oecologia 167:587–597

    Article  Google Scholar 

  • Kim SH, Lieth JH (2003) A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.). Ann Bot 91:771–781

    Article  Google Scholar 

  • Knorr W, Kattge J (2005) Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling. Glob Chang Biol 11:1333–1351

    Article  Google Scholar 

  • Kosugi Y, Shibata S, Kobashi S (2003) Parameterization of the CO2 and H2O gas exchange of several temperate deciduous broad-leaved trees at the leaf scale considering seasonal changes. Plant Cell Environ 26:285–301

    Article  Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355

    Article  Google Scholar 

  • Li H, Xie Y, Ma M (2009a) Reconstruction of temporal NDVI dataset: evaluation and case study. Remote Sensing Technology and Application 5:18–25

    Google Scholar 

  • Li X., Li X., Li Z., Ma M., Wang J., Xiao Q., Liu Q., Che T., Chen E., Yan G. (2009b). Watershed allied telemetry experimental research. J Geophys Res 114(D22103). doi:10.1029/2008JD011590

  • Luo Y, White LW, Canadell JG, DeLucia EH, Ellsworth DS, Finzi A, Lichter J, Schlesinger WH (2003) Sustainability of terrestrial carbon sequestration: a case study in Duke Forest with inversion approach. Glob Biogeochem Cycles 17:1–21

    Article  Google Scholar 

  • Ma M, Veroustraete F (2006) Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China. Adv Space Res 37:835–840

    Article  Google Scholar 

  • McCallum I, Franklin O, Moltchanova E, Merbold L, Schmullius C, Shvidenko A, Schepaschenko D, Fritz S (2013) Improved light and temperature responses for light use efficiency based GPP models. Biogeosci Discuss 10:8919–8947

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087

    Article  Google Scholar 

  • Moorcroft P, Hurtt G, Pacala SW (2001) A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol Monogr 71:557–586

    Article  Google Scholar 

  • Mosegaard K, Sambridge M (2002) Monte Carlo analysis of inverse problems. Inverse Probl 18:R29

    Article  Google Scholar 

  • Ruimy A, Kergoat L, Bondeau A (1999) Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light-use efficiency. Glob Chang Biol 5:56–64

    Article  Google Scholar 

  • Running S.W., Nemani R., Glassy J.M., Thornton P.E. (1999). MODIS daily photosynthesis (PSN) and annual net primary production (NPP) product (MOD17) Algorithm Theoretical Basis Document. University of Montana, SCF At-Launch Algorithm ATBD Documents (available online at: www. ntsg. umt. edu/modis/ATBD/ATBD_MOD17_v21. pdf)

  • Sellers P, Berry J, Collatz G, Field C, Hall F (1992) Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens Environ 42:187–216

    Article  Google Scholar 

  • Singsaas EL, Ort DR, DeLucia EH (2001) Variation in measured values of photosynthetic quantum yield in ecophysiological studies. Oecologia 128:15–23

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9:161–185

    Article  Google Scholar 

  • Thornton P, Law B, Gholz HL, Clark KL, Falge E, Ellsworth D, Goldstein A, Monson R, Hollinger D, Falk M (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric For Meteorol 113:185–222

    Article  Google Scholar 

  • Tuzet A, Perrier A, Leuning R (2003) A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell Environ 26:1097–1116

    Article  Google Scholar 

  • Van Wijk M, Dekker S, Bouten W, Bosveld F, Kohsiek W, Kramer K, Mohren G (2000) Modeling daily gas exchange of a Douglas-fir forest: comparison of three stomatal conductance models with and without a soil water stress function. Tree Physiol 20:115–122

    Article  Google Scholar 

  • Veroustraete F, Sabbe H, Eerens H (2002) Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sens Environ 83:376–399

    Article  Google Scholar 

  • Wang X, Ma M, Huang G, Veroustraete F, Zhang Z, Song Y, Tan J (2012) Vegetation primary production estimation at maize and alpine meadow over the Heihe River Basin, China. Int J Appl Earth Obs Geoinfo 17:94–101

    Article  Google Scholar 

  • Wang YP, Trudinger CM, Enting IG (2009) A review of applications of model–data fusion to studies of terrestrial carbon fluxes at different scales. Agric For Meteorol 149:1829–1842

    Article  Google Scholar 

  • Wu X, Luo Y, Weng E, White L, Ma Y, Zhou X (2009) Conditional inversion to estimate parameters from eddy-flux observations. J Plant Ecol 2:55–68

    Article  Google Scholar 

  • Xiao X, Zhang Q, Braswell B, Urbanski S, Boles S, Wofsy S, Moore III B, Ojima D (2004a) Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens Environ 91:256–270

    Article  Google Scholar 

  • Xiao XM, Hollinger D, Aber J, Goltz M, Davidson EA, Zhang QY, Moore III B (2004b) Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens Environ 89:519–534

    Article  Google Scholar 

  • Xu T, White L, Hui D, Luo Y (2006) Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction. Glob Biogeochem Cycles 20:2. doi:10.1029/2005GB002468

    Article  Google Scholar 

  • Yuan WP, Liu SG, Zhou GS, Zhou GY, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Goldstein AH, Goulden ML, Hollinger DY, Hu Y, Law BE, Stoy PC, Vesala T, Wofsy SC (2007) Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric For Meteorol 143(3):189–207

    Article  Google Scholar 

  • Zhu G-F, Li X, Su Y-H, Lu L, Huang C-L (2011) Seasonal fluctuations and temperature dependence in photosynthetic parameters and stomatal conductance at the leaf scale of Populus euphratica Oliv. Tree Physiol 31:178–195

    Article  Google Scholar 

  • Zhu G, Li X, Su Y, Huang C (2010) Parameterization of a coupled CO 2 and H 2 O gas exchange model at the leaf scale of Populus euphratica. Hydrol Earth Syst Sci 14:419–431

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 91225302), the Chinese State Key Basic Research Project (Grant No. 2013CB956604), the National Natural Science Foundation of China (Grant No. 41301362 and 41201372) and the “Watershed Allied Telemetry Experimental Research (WATER)” experiment. We also would like to thank the Editor and anonymous reviewers for their constructive comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xufeng Wang.

Appendix A: photosynthesis model

Appendix A: photosynthesis model

1.1 Appendix A.1: Scalars in LUE model

f(T) is calculated using the following equation (Xiao et al. 2004b):

$$ f(T)=\frac{\left(T-{T}_{\mathit{\min}}\right)\left(T-{T}_{\max}\right)}{\left(T-{T}_{\min}\right)\left(T-{T}_{\max}\right)-{\left(T-{T}_{\mathrm{opt}}\right)}^2} $$
(A1)

where T max [°C], T min [°C], and T opt [°C] are the maximum, minimum, and optimal photosynthetic temperatures, respectively. Moreover, T [°C] is the air temperature; f(T) [dimensionless] was set to 0 when T was less than T min or T was greater than Tmax. Furthermore, f(VPD) is calculated using the following equation (Running et al. 1999):

$$ f(VPD)=\left({VPD}_{\max}\hbox{-} VV\right)/\left({VPD}_{\max }-{VPD}_{\min}\right) $$
(A2)

VPDmax [Pa] and VPDmin [Pa] are empirical parameters, and VPD [Pa] is the vapor pressure deficit, which is calculated using the air temperature T [°C] and RH [%] (Wu et al. 2009):

$$ \ln {e}_s=21.382-5347.5/\left(T+273.15\right) $$
(A3)
$$ VPD=0.1\cdot {e}_s\cdot \left(1-RH/100\right) $$
(A4)

Furthermore, fAPAR is calculated with an exponential model using the LAI as input (Ruimy et al. 1999):

$$ fAPAR=1-{e}^{-kn*LAI} $$
(A5)

where kn is the light extinction coefficient and LAI is leaf area index.

1.2 Appendix A.2: Ac and Ae in Farquhar model

Ac [μmol CO2/m2/s] is calculated according to the following equation:

$$ {A}_c={V}_m\frac{C_i-{\varGamma}_{*}}{C_i+{K}_c\left(1+\left({O}_x/{k}_o\right)\right)} $$
(A6)
$$ {C}_i=f{c}_i*{C}_a $$
(A7)

where C i is the intercellular CO2 concentration [μmol CO2/mol], C a is the ambient CO2 concentration [365 μmol CO2/mol], and fc i is the ratio of the intercellular CO2 concentration to the ambient air CO2 concentration. Moreover, O x is the oxygen concentration in the air [0.21 mol O2/mol], and V m is the maximum carboxylation rate [μmol CO2/m2/s], which is calculated using the canopy temperature T [°C] and activation energy E vm according to the Arrhenius equation:

$$ {V}_m={V}_m^{25}\cdot \exp \left(\frac{E_{Vm}\cdot \left(\left(T+273.15\right)-298\right)}{R\cdot \left(T+273.15\right)\cdot 298}\right) $$
(A8)

where \( {V}_m^{25} \) is the maximum carboxylation rate at 25 °C and R is the universal gas constant [8.314 J/K/mol]. The CO2 compensation point without dark respiration is represented by Γ * [μmol CO2/mol] and is also calculated using the Arrhenius equation:

$$ {\varGamma}_{*}={\varGamma}_{*}^{25}\cdot \exp \left(\frac{E_{\varGamma_{*}^{25}}\cdot \left(\left(T+273.15\right)-298\right)}{R\cdot \left(T+273.15\right)\cdot 298}\right) $$
(A9)

where \( {\varGamma}_{*}^{25} \) is the CO2 compensation point without dark respiration at 25 °C; \( {E}_{\varGamma_{*}^{25}} \) describes the temperature dependence ofΓ *. Two Michaelis–Menten constants are temperature dependent based on the Arrhenius equation, similarly to V m .K c is the Michaelis–Menten constant for carboxylation [μmol/mol] and is calculated using the following equation:

$$ {K}_c={K}_c^{25}\cdot \exp \left(\frac{E_{K_c}\cdot \left(\left(T+273.15\right)-298\right)}{R\cdot \left(T+273.15\right)\cdot 298}\right) $$
(A10)

where \( {E}_{K_c} \) is the activation energy and \( {K}_c^{25} \) is the Michaelis–Menten constant for carboxylation at 25 °C. Moreover, K o is the Michaelis–Menten constant for oxygenation (mol/mol) and is calculated according to the following relationship:

$$ {K}_o={K}_o^{25}\cdot \exp \left(\frac{E_{K_o}\cdot \left(\left(T+273.15\right)-298\right)}{R\cdot \left(T+273.15\right)\cdot 298}\right) $$
(A11)

where \( {E}_{K_o} \) is the activation energy and \( {K}_o^{25} \) is the Michaelis–Menten constant for oxygenation at 25 °C. The light electron transport-limited CO2 assimilation rate, Ae [μmol CO2/m2/s], is calculated as follows:

$$ {A}_e=\frac{\alpha_q\cdot I\cdot {J}_m}{\sqrt{J_m^2+{\alpha}_q^2\cdot {I}^2}}\cdot \frac{Ci-{\varGamma}_{*}}{4\cdot \left( Ci+2{\varGamma}_{*}\right)} $$
(A12)

where I is the absorbed PAR [μmol photons/m2/s], α q is the quantum efficiency of photon capture [mol/mol photons], and J m is the maximum electron transport rate [μmol CO2/m2/s]. Furthermore, Jm depends on temperature and is calculated by

$$ {J}_m={r}_{JmVm}\cdot {V}_m^{25}\cdot \exp \left(\frac{E_{Jm}\cdot \left(\left(T+273.15\right)-298\right)}{R\cdot \left(T+273.15\right)\cdot 298}\right) $$
(A13)

where r JmVm is the ratio of Jm to \( {V}_m^{25} \) at 25 °C; E Jm is the activation energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Cheng, G., Li, X. et al. A comparison of two photosynthesis parameterization schemes for an alpine meadow site on the Qinghai-Tibetan Plateau. Theor Appl Climatol 126, 751–764 (2016). https://doi.org/10.1007/s00704-015-1611-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1611-y

Keywords

Navigation