Skip to main content
Log in

Analysis of the spatial correlation structure exhibited by daily rainfall in Southern Italy

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The investigation of the spatial correlation structure exhibited by ground-based rainfall measurements can provide useful results for understanding, from a climatic point of view, the effects produced by the interaction between meteorological patterns and morphological features of a given territory. The central aspect of this study is the description of the spatial inhomogeneity and anisotropy that characterizes the correlation structure of daily rainfall. In the proposed approach, the analysis is developed by assuming that the correlation structure exhibited by the rainfall heights can be interpreted through a suitable deformation of the spatial coordinates providing a homogeneous and isotropic field. The technique has been applied to the daily rainfall recorded at the rain gauges network of the Crati River basin (Southern Italy). The results show that the elliptic deformations of the spatial structure exhibited by the correlation structure of the rain gauges are closely related to the physiographic features of the territory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1970) Handbook of mathematical functions with formulas, graphs and mathematical tables. Dover, New York

  • Anderes EB, Stein ML (2008) Estimating deformations of isotropic Gaussian random fields on the plane. Ann Statist 36(2):719–741. doi:10.1214/009053607000000893

    Article  Google Scholar 

  • Bacchi B, Kottegoda NT (1995) Identification and calibration of spatial correlation patterns of rainfall. J Hydrol 165:311–348. doi:10.1016/0022-1694(94)02590-8

    Article  Google Scholar 

  • Berndtsson R (1988) Temporal variability in spatial correlation of daily rainfall. Water Resour Res 24(9):1511. doi:10.1029/WR024i009p01511

    Article  Google Scholar 

  • Berndtsson R, Niemczynowicz J (1988) Spatial and temporal scales in rainfall analysis - some aspects and future perspectives. J Hydrol 100(1–3):293. doi:10.1016/0022-1694(88)90189-8

    Article  Google Scholar 

  • Berndtsson R, Jinno K, Kawamura A, Larson M, Niemczynowicz J (1994) Some Eulerian and Lagrangian statistical properties of rainfall at small space-time scales. J Hydrol 153(1–4):339. doi:10.1016/0022-1694(94)90198-8

    Article  Google Scholar 

  • Brown PJ, Lee ND, Zidek JV (1994) Multivariate spatial interpolation and exposure to air pollutant. Can J Stat 22:489–505. doi:10.2307/3315406

    Article  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data, revised edition. Wiley, New York

    Google Scholar 

  • Damian D, Sampson PD, Guttorp P (2001) Bayesian estimation of semi-parametric non-stationary spatial covariance structures. Environmetrics 12:161–178. doi:10.1002/1099-095X(200103)12:2<161::AID-ENV452>3.0.CO;2-G

    Article  Google Scholar 

  • Desa MMN, Niemczynowicz J (1996) Spatial variability of rainfall in Kuala Lumpur, Malaysia: long and short term characteristics. Hydrol Sci Bull 41(3):345. doi:10.1080/02626669609491507

    Article  Google Scholar 

  • Iovleff S, Perrin O (2004) Estimating a nonstationary spatial structure using simulated annealing. J Comput Graph Statist 13:90–105. doi:10.1198/1061860043100

    Article  Google Scholar 

  • Loader C, Switzer P (1992) Spatial covariance estimation for monitoring data. In: Walden and Guttorp (eds), Statistics in Environmental and Earth Sciences, Arnold, London, 52–70

  • Lovejoy S, Schertzer D (1985) Generalized scale invariance in the atmosphere and fractal model of rain. Water Resour Res 21:1233–1250. doi:10.1029/ WR021i008p01233

    Article  Google Scholar 

  • Mandapaka PV, Villarini G, Seo B-C, Krajewski, WF (2010) Effect of radar-rainfall uncertainties on the spatial characterization of rainfall events, J Geophys Res-Atmos 115. doi:10.1029/2009JD013366

  • Matérn B (1986) Spatial variation, 2nd edn. Springer, New York

    Book  Google Scholar 

  • May DR, Julien PJ (1998) Eulerian and Lagrangian correlation structures of convective rainstorms. Water Resour Res 34(10):2671. doi:10.1029/98WR01531

    Google Scholar 

  • Meiring W, Monestiez P, Sampson PD, Guttorp P (1997) Developments in the modelling of nonstationary spatial covariance structure from space-timing monitoring data. In: Baafi and Schofield (eds), Geostatistics Wollongong ‘96, Kluwer, Dordrecht, 162–173

  • Molini A, La Barbera P, Lanza LG (2006) Correlation patterns and information flows in rainfall fields. J Hydrol 322(1–4):89–104. doi:10.1016/j.jhydrol.2005.02.041

    Article  Google Scholar 

  • Nott DJ, Dunsmuir WTM (2002) Estimation of nonstationary spatial covariance structure. Biometrika 89(4):819–829. doi:10.1093/biomet/89.4.819

    Article  Google Scholar 

  • Nychka D, Saltzman N (1998) Design of air quality networks. In: Nychka D, Cox L, Piegorsch W (eds) Case Studies in Environmental Statistics. Lecture Notes in Statistics, Springer-Verlag, New York, pp 51–76

    Chapter  Google Scholar 

  • Obled C, Creutin JD (1986) Some developments in the use of empirical orthogonal functions for mapping meteorological fields. J Appl Meteorol 25:1189–1204. doi:10.1175/1520-0450(1986)025<1189:SDITUO>2.0.CO;2

    Article  Google Scholar 

  • Otten RHJM, van Ginneken LPPP (1989) The annealing algorithm. Kluwer, Boston

    Book  Google Scholar 

  • Press WH, Teukoisky SA, Vetterling WT, Flannery BP (1997) Numerical recipes in C: the art of scientific computing. Cambridge University Press, New York

    Google Scholar 

  • Sampson PD, Guttorp P (1992) Nonparametric estimation of nonstationarity spatial covariance structure. J Am Stat Assoc 87:108–119. doi:10.1080/01621459.1992.10475181

    Article  Google Scholar 

  • Sampson PD, Damian D, Guttorp P (2001) Advances in modelling and inference for environmental processes with nonstationary spatial covariance structure. In: Monestiez, Allard and Froidvaux (eds), GeoENV 2000, Geostatistics for Environmental Applications, Kluwer, Dordrecht, 17–32

  • Sumner G, Ramis C, Guijarro JA (1995) Daily rainfall domains in Mallorca. Theor Appl Climatol 51(4):199. doi:10.1007/BF00867280

    Article  Google Scholar 

  • Zawadzki II (1973) Statistical properties of the precipitation patterns. J Appl Meteorol 12:459–472. doi:10.1175/1520-0450(1973)012<0459:SPOPP>2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirangelo, B., Ferrari, E. Analysis of the spatial correlation structure exhibited by daily rainfall in Southern Italy. Theor Appl Climatol 118, 203–209 (2014). https://doi.org/10.1007/s00704-013-1042-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-1042-6

Keywords

Navigation