Skip to main content

Advertisement

Log in

Spatial correlation structure of monthly rainfall at a mesoscale region of north-eastern Bohemia

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The spatial correlation structure of monthly rainfall was analysed using data from 38 rain gauges located in north-eastern Bohemia. Three different inter-station correlation measures—Pearson’s correlation coefficient, Spearman’s rank-order correlation coefficient and Kendall’s tau rank correlation coefficient—were estimated using monthly rainfall records from a recent 31-year period. Six different theoretical parametric correlation models were identified using the nonlinear least squares method. The spatial correlation structure was described using the fitted parameters. Comparison of estimated correlation models showed that, as measured by standard error, the best fitted was a two-parameter exponential model. The relationships between parameters of the exponential two-parameter model were further explored and described. The temporal variability of correlation showed trends in the fitted parameters over the studied period. On a seasonal basis, the correlation between the stations was stronger in autumn and winter than in spring and summer. The spatial variability of estimated parameters revealed that parameters of Matérn and two-parameter exponential models were dependent on altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (eds) (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 10th edn, vol 55. U.S. Government Printing Office, Washington, D.C

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson D B, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res-Atmos 111(D5109):1–22. doi:10.1029/2005JD006290

    Google Scholar 

  • Aurenhammer F (1991) Voronoi diagrams—a survey of a fundamental geometric data structure. Comput Surv 23(3):345–405

    Article  Google Scholar 

  • Becker RA, Chambers JM, Wilks AR (1988) The new S Language: a programming environment for data analysis and graphics. Wadsworth and Brooks/Cole Advanced Books & Software, Monterey

    Google Scholar 

  • Briffa K, Jones P (1993) Global surface air temperature variations during the twentieth century: Part 2, implications for large-scale high-frequency palaeoclimatic studies. Holocene 3(1):77–88. doi:10.1177/095968369300300109

    Article  Google Scholar 

  • Brommundt J, Bárdossy A (2007) Spatial correlation of radar and gauge precipitation data in high temporal resolution. Adv Geosci 10:103–109. doi:10.5194/adgeo-10-103-2007

    Article  Google Scholar 

  • Chumchean S, Sharma A, Seed A (2006) An integrated approach to error correction for real-time radar-rainfall estimation. J Atmos Ocean Tech 23(1):67–79. doi:10.1175/JTECH1832.1

    Article  Google Scholar 

  • Ciach GJ, Krajewski WF (2006) Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma. Adv Water Resour 29(10):1450–1463. doi:10.1016/j.advwatres.2005.11.003

    Article  Google Scholar 

  • Clarke RT, Buarque DC, Dias de Paiva RC, Collischonn W (2011) Issues of spatial correlation arising from the use of TRMM rainfall estimates in the Brazilian Amazon. Water Resour Res:47. doi:10.1029/2010WR010334

  • Dai A, Fung I, Del Genio A (1997) Surface observed global land precipitation variations during 1900–1988. J Climate 10:2943–2962

    Article  Google Scholar 

  • Dennis JE, Gay DM, Welsch RE (1981) An adaptive nonlinear least-squares algorithm. ACM T Math Software 7(3):348–368. doi:10.1145/355958.355965

    Article  Google Scholar 

  • Feidas H (2010) Validation of satellite rainfall products over Greece. Theor Appl Climatol 99(1):193–216. doi:10.1007/s00704-009-0135-8

    Article  Google Scholar 

  • Fox J, Weisberg S (2010) Nonlinear regression and nonlinear least squares in R, An appendix to an R Companion to applied regression, 2nd edn

  • Fredricks GA, Nelsen RB (2007) On the relationship between Spearman’s rho and Kendall’s tau for pairs of continuous random variables. J Stat Plan Infer 137(7):2143–2150. doi:10.1016/j.jspi.2006.06.045

    Article  Google Scholar 

  • Habib E, Krajewski WF, Ciach GJ (2001) Estimation of rainfall interstation correlation. J Hydrometeorol 2(6):621–629. doi:10.1175/1525-7541(2001)002¡0621:EORIC¿2.0.CO;2

    Article  Google Scholar 

  • Handcock MS, Wallis JR (1994) An approach to statistical spatial-temporal modeling of meteorological fields. J Am Stat Assoc 89(426):368–378. doi:10.1080/01621459.1994.10476754

    Article  Google Scholar 

  • Hofstra N, New M (2009) Spatial variability in correlation decay distance and influence on angular-distance weighting interpolation of daily precipitation over Europe. Int J Climatol 29(12):1872–1880. doi:10.1002/joc.1819

    Article  Google Scholar 

  • Hofstra N, New M, McSweeney C (2010) The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Climate Dynamics 35(5):841–858. doi:10.1007/s00382-009-0698-1

    Article  Google Scholar 

  • Jones P, Osborn TJ, Briffa KR (1997) Estimating sampling errors in large-scale temperature averages. J Climate 10(10):2548–2568. doi:10.1175/1520-0442(1997)010<2548:ESEILS>2.0.CO;2

    Article  Google Scholar 

  • Kaufman CG, Shaby BA (2013) The role of the range parameter for estimation and prediction in geostatistics. Biometrika 100(2):473–484. doi:10.1093/biomet/ass079

    Article  Google Scholar 

  • Krajewski WF, Ciach GJ, Habib E (2003) An analysis of small-scale rainfall variability in different climatic regimes. Hydrolog Sci J 48(2):151–162. doi:10.1623/hysj.48.2.151.44694

    Article  Google Scholar 

  • Kyselý J, Beranová R (2009) Climate-change effects on extreme precipitation in central Europe: Uncertainties of scenarios based on regional climate models. Theor Appl Climatol 95(3):361–374. doi:10.1007/s00704-008-0014-8

    Article  Google Scholar 

  • Mandapaka PV, Qin X (2013) Analysis and characterization of probability distribution and small-scale spatial variability of rainfall in Singapore using a dense gauge network. J Appl Meteor Climatol 52(12):2781–2796. doi:10.1175/JAMC-D-13-0115.1

    Article  Google Scholar 

  • Mandapaka PV, Villarini G, Seo BC, Krajewski WF (2010) Effect of radar-rainfall uncertainties on the spatial characterization of rainfall events. J Geophys Res Atmos 115(D17):1–16. doi:10.1029/2009JD013366

    Article  Google Scholar 

  • Marchand R (2012) Spatial correlation of hydrometeor occurrence, reflectivity, and rain rate from CloudSat. J Geophys Res Atmos 117(D6):1–21. doi:10.1029/2011JD016678

    Article  Google Scholar 

  • Minasny B, McBratney AB (2005) The matérn function as a general model for soil variograms. Geoderma 128(3-4):192–207. doi:10.1016/j.geoderma.2005.04.003

    Article  Google Scholar 

  • Navarro J, Balakrishnan N (2010) Study of some measures of dependence between order statistics and systems. J Multivar Anal 101(1):52–67. doi:10.1016/j.jmva.2009.04.016

    Article  Google Scholar 

  • Nelsen RB (1992) On measures of association as measures of positive dependence. Stat Probab Lett 14(4):269–274. doi:10.1016/0167-7152(92)90056-B

    Article  Google Scholar 

  • New M, Hulme M, Jones P (1999) Representing twentieth-century space-time climate variability. Part I: Development of a 1961-90 mean monthly terrestrial climatology. J Climate 12:829–856

    Article  Google Scholar 

  • New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: Development of 1901-96 monthly grids of terrestrial surface climate. J Climate 13:2217–2238

    Article  Google Scholar 

  • Osborn TJ, Hulme M (1997) Development of a relationship between station and grid-box rainday frequencies for climate model evaluation. J Climate 10(8):1885–1908. doi:10.1175/1520-0442(1997)010¡1885:DOARBS¿2.0.CO;2

    Article  Google Scholar 

  • Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691

    Article  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.R-project.org

    Google Scholar 

  • Ritz C, Streibig J (2008) More on nls(). In: Ritz C, Streibig J (eds) Nonlinear Regression with R, Use R. Springer, New York, pp 37–54

    Google Scholar 

  • Şen Z, Habib Z (2001) Monthly spatial rainfall correlation functions and interpretations for Turkey. Hydrolog Sci J 46(4):525–535. doi:10.1080/02626660109492848

    Article  Google Scholar 

  • Serinaldi F (2008) Analysis of inter-gauge dependence by Kendall’s τ K , upper tail dependence coefficient, and 2-copulas with application to rainfall fields. Stoch Environ Res Risk Assess 22(6):671–688. doi:10.1007/s00477-007-0176-4

    Article  Google Scholar 

  • Sharon D (1978) Rainfall fields in Israel and Jordan and the effect of cloud seeding on them. J Appl Meteor 17 (1):40–48. doi:10.1175/1520-0450(1978)017¡0040:RFIIAJ¿2.0.CO;2

    Article  Google Scholar 

  • Sharon D (1979) Correlation analysis of the Jordan Valey rainfall field. Mon Wea Rev 107(8):1042–1047. doi:10.1175/1520-0493(1979)107¡1042:CAOTJV¿2.0.CO;2

    Article  Google Scholar 

  • Štěpánek P, Zahradníček P, Huth R (2011) Interpolation techniques used for data quality control and calculation of technical series: an example of a Central European daily time series. Q J Hung Meteorol Soc 115(1-2):87–98

    Google Scholar 

  • Tabios GQ, Salas JD (1985) A comparative analysis of techniques for spatial interpolation of precipitation. J Am Water Resour Assoc 21(3):365–380. doi:10.1111/j.1752-1688.1985.tb00147.x

    Article  Google Scholar 

  • Tokay A, Öztürk K (2012) An experimental study of the small-scale variability of rainfall. J Hydrometeorol 13(1):351–365. doi:10.1175/JHM-D-11-014.1

    Article  Google Scholar 

  • Tolasz R (ed) (2007) Atlas podnebí Česka: Climate atlas of Czechia, 1st edn. Český hydrometeorologický ústav, Praha

  • Velasco-Forero CA, Sempere-Torres D, Cassiraga EF, Gmez-Hernn̈dez JJ (2009) A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv Water Resour 32(7):986–1002. doi:10.1016/j.advwatres.2008.10.004

    Article  Google Scholar 

  • Villarini G, Mandapaka PV, Krajewski WF, Moore RJ (2008) Rainfall and sampling uncertainties: a rain gauge perspective. J Geophys Res 113(D11):1–12. doi:10.1029/2007JD009214

    Google Scholar 

  • Williams CJR, Kniveton DR, Layberry R (2010) Assessment of a climate model to reproduce rainfall variability and extremes over Southern Africa. Theor Appl Climatol 99(1–2):9–27

    Article  Google Scholar 

  • Zíková N (2009) Spatial variability of precipitation annual cycles. Master’s thesis, Charles University in Prague, Faculty of Mathematics and Physics, Department of Meteorology and Environment Protection

Download references

Acknowledgements

The project was supported by the Internal Grant Agency of the Faculty of Environmental Sciences of Czech University of Life Sciences Prague (No. 20124256). The data were provided by the Czech Hydrometeorological Institute (CHMI). We thank to reviewers for their comments which helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtěch Svoboda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svoboda, V., Máca, P., Hanel, M. et al. Spatial correlation structure of monthly rainfall at a mesoscale region of north-eastern Bohemia. Theor Appl Climatol 121, 359–375 (2015). https://doi.org/10.1007/s00704-014-1241-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1241-9

Keywords

Navigation