Skip to main content

Advertisement

Log in

Assessing scalar concentration footprint climatology and land surface impacts on tall-tower CO2 concentration measurements in the boreal forest of central Saskatchewan, Canada

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Reducing the large uncertainties in current estimates of CO2 sources and sinks at regional scales (102–105 km2) is fundamental to improving our understanding of the terrestrial carbon cycle. Continuous high-precision CO2 concentration measurements on a tower within the planetary boundary layer contain information on regional carbon fluxes; however, its spatial representativeness is generally unknown. In this study, we developed a footprint model (Simple Analytical Footprint model based on Eulerian coordinates for scalar Concentration [SAFE-C]) and applied it to two CO2 concentration towers in central Canada: the East Trout Lake 106-m-tall tower (54°21′N, 104°59′W) and the Candle Lake 28-m-high tower (53°59′N, 105°07′W). Results show that the ETL tower’s annual concentration footprints were around 103–105 km2. The monthly footprint climatologies in summer were 1.5–2 times larger than in winter. The impacts of land surface carbon flux associated with heterogeneous distribution of vegetation types on the CO2 concentration measurements were different for the different heights, varied with a range of ±5 % to ±10 % among four heights. This study indicates that concentration footprint climatology analysis is important in interpreting the seasonal, annual and inter-annual variations of tower measured CO2 concentration data and is essential for comparing and scaling regional carbon flux estimates using top-down or bottom-up approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baldocchi DD, Falge E, Gu L, Olson R, Hollinger D et al (2001) Fluxnet: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapour, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434

    Article  Google Scholar 

  • Bartholomé E, Belward A (2005) GLC2000: A new approach to global land cover mapping from Earth observation data. Int J Remote Sens 26:1959–1977

    Article  Google Scholar 

  • Bousquet P, Ciais P, Peylin P, Ramonet M, Monfray P (1999) Inverse modeling of annual atmospheric CO2 sources and sinks: 1. Method and control inversion. J Geophys Res 104:26161–26178

    Article  Google Scholar 

  • Chen B, Chen JM, Mo G, Black TA, Worthy DEJ (2008) Comparison of regional carbon flux estimates from CO2 concentration measurements and remote sensing based footprint integration. Glob Biogeochem Cycles 22, GB2012. doi:10.1029/2007GB003024

    Article  Google Scholar 

  • Chen B, Black A, Coops NC, Hilker T, Trofymow et al (2009) Assessing tower flux footprint climatology and scaling between remotely sensed and eddy covariance measurements. Bound-Layer Meteorol 130:137–167

    Article  Google Scholar 

  • Desai AR, Helliker BR, Moorcroft PR, Andrews AE, Berry JA (2010) Climatic controls of interannual variability in regional carbon fluxes from top-down and bottom-up perspectives. J Geophys Res 115, G02011. doi:10.1029/2009JG001122

    Google Scholar 

  • Engelen RJ, Stephens GL (2004) Information content of infrared satellite sounding measurements with respect to CO2. J Appl Meteorol 43:373–378

    Article  Google Scholar 

  • Enting IG, Trudinger CM, Francey RJ (1995) A synthesis inversion of the concentration and δ13C of atmospheric CO2. Tellus 47B:35–52

    Article  Google Scholar 

  • Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J et al (1998) A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446

    Article  Google Scholar 

  • Finnigan J (2004) The footprint concept in complex terrain. Agric For Meteorol 127:117–129

    Article  Google Scholar 

  • Foley S, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574

    Article  Google Scholar 

  • Friedl MA, McIver D, Hodges K et al (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83:287–302

    Article  Google Scholar 

  • Gash JHC (1986) A note on estimating the effect of a limited fetch on micrometeorological evaporation measurements. Bound-Layer Meteorol 35:409–414

    Article  Google Scholar 

  • Gerbig C, Dolman AJ, Heimann M (2009) On observational and modelling strategies targeted at regional carbon exchange over continents. Biogeosciences 6:1949–1959

    Article  Google Scholar 

  • Gloor M, Fan SM, Pacala S, Sarmiento J, Ramonet M (1999) A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO2 on a continental scale. J Geophys Res 104:14245–14260

    Article  Google Scholar 

  • Gloor M, Bakwin P, Hurst D, Lock L, Draxler R, Tans P (2001) What is the concentration footprint of a tall tower? J Geophys Res 106:17,831–17,840

    Article  Google Scholar 

  • Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D et al (2002) Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415:626–630

    Article  Google Scholar 

  • Gurney KR, Mendoza DL, Zhou YY, Fischer ML, Miller CC et al (2009) High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ Sci Technol 43:5535–5541

    Article  Google Scholar 

  • Hansen MC, Reed B (2000) A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products. Int J Remote Sens 21:1365–1373

    Article  Google Scholar 

  • Higuchi K, Worthy DEJ, Chan D, Shashkov A (2003) Regional source/sink impact on the diurnal, seasonal and inter-annual variations in atmospheric CO2 at a boreal forest site in Canada. Tellus 55B:115–125

    Article  Google Scholar 

  • Horst TW, Weil JC (1992) Footprint estimation for scalar flux measurements in the atmospheric surface layer. Bound-Layer Meteorol 59:279–296

    Article  Google Scholar 

  • Jung M, Reichstein M, Margolis HA, Cescatti A, Richardson AD et al (2011) Global patterns of land–atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res 116, G00J07. doi:10.1029/2010JG001566

    Google Scholar 

  • Kljun N, Rotach MW, Schmid HP (2002) A 3D backward Lagrangian footprint model for a wide range of boundary layer stratifications. Bound-Layer Meteorol 103:205–226

    Article  Google Scholar 

  • Kljun N, Kormann R, Rotach MW et al (2003) Comparison of the Lagrangian footprint model LPDM-B with an analytical footprint model. Bound-Layer Meteorol 106:349–355

    Article  Google Scholar 

  • Kljun N, Kastner-Klein P, Fedorovich E et al (2004) Evaluation of a Lagrangian footprint model using data from wind tunnel convective boundary layer. Agric For Meteorol 127:189–201

    Article  Google Scholar 

  • Kormann R, Meixner FX (2001) An analytic footprint model for neutral stratification. Bound-Layer Meteorol 99:207–224

    Article  Google Scholar 

  • Lauvaux T, Uliasz M, Sarrat C, Chevallier F, Bousquet P et al (2008) Mesoscale inversion: first results from the CERES campaign with synthetic data. Atmos Chem Phys 8:3459–3471

    Article  Google Scholar 

  • Leclerc MY, Thurtell GW (1990) Footprint prediction of scalar fluxes using a Markovian analysis. Bound-Layer Meteorol 52:247–258

    Article  Google Scholar 

  • Lin JS, Hildemann LM (1996) Analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities. Atmos Environ 30:239–254

    Article  Google Scholar 

  • Lin JC, Gerbig C, Wofsy SC, Andrews AE, Daube BC et al. (2004) Measuring fluxes of trace gases at regional scales by Lagrangian observations: application to the CO2 Budget and Rectification Airborne (COBRA) study. J Geophys Res 109: doi:10.1029/2004JD004754

  • Lin JC, Gerbig C, Wofsy SC, Daube BC et al (2006) What have we learned from intensive atmospheric sampling field programs of CO2. Tellus 58B:331–343

    Article  Google Scholar 

  • Liu SM, Xu ZW, Zhu ZL, Jia ZZ, Zhu MJ (2013) Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J Hydrol 487:24–38

    Article  Google Scholar 

  • Loveland TR, Reed BC, Brown JF et al (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21:1303–1330

    Article  Google Scholar 

  • Masek JG, Collatz J (2006) Estimating forest carbon fluxes in a disturbed southeastern landscape: integration of remote sensing, forest inventory, and biogeochemical modeling. J Geophys Res 111, G01006. doi:10.1029/2005JG000062

    Google Scholar 

  • Matross D, Andrews A, Pathmathevan M (2006) Estimating regional carbon exchange in New England and Quebec by combining atmospheric, ground-based and satellite data. Tellus 58B:344–358

    Article  Google Scholar 

  • Papale D, Valentini A (2003) A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob Chang Biol 9:525–535

    Article  Google Scholar 

  • Pasquill F (1974) Atmospheric diffusion: the dispersion of windborne material from industrial and other sources, 2nd edn. Wiley, New York, 429 pp

    Google Scholar 

  • Pasquill F, Smith FB (1983) Atmospheric diffusion, IIIth edn. J. Wiley & Sons, New York, 437 p

    Google Scholar 

  • Peters W, Jacobson AR, Sweeney C, Andrews AE, Conway TJ et al (2007) An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc Natl Acad Sci U S A 104:18925–18930

    Article  Google Scholar 

  • PetersW KMC, Van DerWerf GR, Houweling S, Jones CS et al (2010) Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Glob Chang Biol 16:1317–1337

    Article  Google Scholar 

  • Piao SL, Fang JY, Ciais P, Peylin P, Huang Y et al (2009) The carbon balance of terrestrial ecosystems in China. Nature 458:1009–U1082

    Article  Google Scholar 

  • Raupach MR, Denmead OT, Dunin FX (1992) Challenges in linking atmospheric CO2 concentrations to fluxes at local and regional scales. Aust J Bot 40:697–716

    Article  Google Scholar 

  • Reich P, Turner D, Bolstad P (1999) An approach to spatially distributed modeling of net primary production (NPP) at the landscape scale and its application in validation of EOS NPP products. Remote Sens Environ 70:69–81

    Article  Google Scholar 

  • Schmid HP (1994) Source areas for scalar and scalar fluxes. Boun-Layer Meteorol 67:293–318

    Article  Google Scholar 

  • Schmid HP (1997) Experimental design for flux measurements: matching scales of observations and fluxes. Agric For Meteorol 87:179–200

    Article  Google Scholar 

  • Schmid HP, Lloyd CR (1999) Spatial representativeness and the location bias of flux footprint over inhomogeneous areas. Agric For Meteorol 93:195–209

    Article  Google Scholar 

  • Schmid HP and Oke TR (1988) Estimating the source area of a turbulent flux measurement over a patchy surface, Preprints, 8th Symposium on turbulence and diffusion, San Diego, Ca., April 26–29, 1988, Amer. Meteorol. Soc., Boston, Mass, pp. 123–126.

  • Schmid HP, Oke TR (1990) A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain. Q J Roy Meteorol Soc 116:965–988

    Article  Google Scholar 

  • Schmid HP, Cleugh HA, Grimmond CSB, Oke TR (1991) Spatial variability of energy fluxes in suburban terrain. Bound-Layer Meteorol 54:249–276

    Article  Google Scholar 

  • Schuepp PH, Leclerc MY, Macpherson JI et al (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound-Layer Meteorol 50:353–373

    Article  Google Scholar 

  • Schuh AE, Denning AS, Corbin KD, Baker IT, Uliasz M et al (2010) A regional high-resolution carbon flux inversion of North America for 2004. Biogeosciences 7:1625–1644

    Article  Google Scholar 

  • Sitch S, Brovkin V, von Bloh W et al (2005) Impacts of future land cover changes on atmospheric CO2 and climate. Glob Biogeochem Cycles 19, GB2013. doi:10.1029/2004GB002311

    Article  Google Scholar 

  • Tans PP, Fung IY, Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438

    Article  Google Scholar 

  • Turner DP, Cohen WB, Kennedy RE (2000) Alternative spatial resolutions and estimation of carbon flux over a managed forest landscape in western Oregon. Landsc Ecol 15:441–452

    Article  Google Scholar 

  • Turner DP, Gockede M, Law BE, Ritts WD, Cohen WB et al (2011) Multiple constraint analysis of regional land surface carbon flux. Tellus 63B:207–221

    Article  Google Scholar 

  • van Ulden AP (1978) Simple estimates for vertical diffusion from sources near the ground. Atmos Environ 12:2125–2129

    Article  Google Scholar 

  • Wilson JD, Swaters GE (1991) The source area influencing a measurement in the planetary boundary layer: the footprint and the distribution of contact distance. Bound-Layer Meteorol 55:25–46

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by a research grant (2010CB950704) under the Global Change Program of the Chinese Ministry of Science and Technology, the research grants (41071059 & 41271116) funded by the National Science Foundation of China, a Research Plan of LREIS (O88RA900KA), CAS, a research grant (2012ZD010) of Key Project for the Strategic Science Plan in IGSNRR, CAS, and “One hundred talents” program funded by Chinese Academy of Sciences. Contributions from the many researchers involved in data collection and in-kind support from many government and private agencies for each study site are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baozhang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Zhang, H., Coops, N.C. et al. Assessing scalar concentration footprint climatology and land surface impacts on tall-tower CO2 concentration measurements in the boreal forest of central Saskatchewan, Canada. Theor Appl Climatol 118, 115–132 (2014). https://doi.org/10.1007/s00704-013-1038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-1038-2

Keywords

Navigation