Skip to main content
Log in

FAO-56 methodology for determining water requirement of irrigated crops: critical examination of the concepts, alternative proposals and validation in Mediterranean region

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The present study evaluates firstly the ability of the FAO-56 methodology, based on the two-step approach “reference evapotranspiration (ET0)—crop coefficient (K c),” to accurately determine the actual evapotranspiration (ET) of irrigated crops and proposes, secondly, the alternative approaches for improving this determination. The FAO-56 methodology is supported by two hypotheses: (1) ET0 represents all effects of weather and (2) K c varies predominately with specific crop characteristics and only marginally with climate, which enables the transfer of K c standard values among locations and climates. On the base of the theoretical analysis and experimental observations, a critical examination of the previous hypotheses demonstrates that they are not verified by reality. The first hypothesis is not verified for two reasons: (a) The formulation adapted by the Penman–Monteith equation and proposed in FAO-56 methodology for calculating ET0 uses climatic variables determined at a 24-h average scale. However, in principle it is only valid in permanent regime, in other words at least on an hourly scale. (b) The FAO-56-proposed formulation attributes a constant value to the canopy resistance of the reference surface; but in reality, this resistance is variable in relation to the climatic variables. The second hypothesis, concerning the two-step approach, is also not verified because the values of K c largely vary in relation to climatic variables (radiation, air vapour pressure deficit and wind speed). This fact does not support the possibility of the transferability of K c values into locations where the local conditions deviate from the conditions where the adjusted values of K c were determined. The weakness of the ET estimation, observed on several crops cultivated in the Mediterranean region, through the application of the FAO-56 methodology, is the result of errors accumulation, associated with that affects the determination of either ET0 or K c. The present study underlines the advantage of using a one-step approach in the calculation of ET, since it is based on fewer computation steps and, consequently, on fewer error sources than the two-step model. Two models adopting this approach are proposed and validated, one of which can be considered as operational, i.e. it only needs standard meteorological data as input. The use of these models enables an improvement of the ET estimation. This objective is a key component of any strategy to improve agricultural water management in Mediterranean region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abi Saab G (2007) Simulation directe de l'évapotranspiration maximale à partir des données climatiques standards: validation sur quatre cultures de tailles contrastées en region méditerranéenne. Master of science thesis n 458. IAM-Bari, 89p (in French)

  • Allen RG, Jensen ME, Wright JL, Burman RD (1989) Operational estimate of reference evapotranspiration. Agron J 81(4):650–662

    Google Scholar 

  • Allen R G, Pereira L S, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper no. 56. FAO, Rome, Italy, 300 pp

  • Allen RG, Pereira LS, Smith M, Raes D, Wright JL (2005) FAO-56 dual coefficient method for estimating evaporation from soil and application extension. J Irrig Drain E-ASCE 131(1):2–13

    Google Scholar 

  • Allen RG, Pruitt WO, Wright JL, Howell TA, Ventura F, Snyder R, Itenfisu D, Steduto P, Berengena J, Yrisarry JB, Smith M, Pereira LS, Raes D, Perrier A, Alves I, Walter I, Elliott R (2006) A recommendation on standardized surface resistance for hourly calculation of ETo by the FAO56 Penman–Monteith. Agr Water Manage 81(1):1–22

    Google Scholar 

  • Alves I, Pereira LS (2000) Modelling surface resistance from climatic variables. Agr Water Manage 42(3):371–385

    Google Scholar 

  • Amayreh J, Al-Abed N (2005) Developing crop coefficients for field-grown tomato (Lycopersicon esculentum Mill.) under drip irrigation with black plastic mulch. Agr Water Manage 73(3):247–254

    Google Scholar 

  • Arya SP (2001) Introduction to micrometeorology. Academic, London, 420 pp

    Google Scholar 

  • Ayars JE, Johnson RS, Phene CJ, Trout TJ, Clark DA, Mead RM (2003) Water use by drip-irrigated late-season peaches. Irrigation Sci 22(3–4):187–194

    Google Scholar 

  • Azhar AH, Perera BJC (2011) Evaluation of reference evapotranspiration estimation methods under southeast Australian conditions. J Irr Drain E-ASCE 137(5):268–279

    Google Scholar 

  • Barbagallo S, Consoli S, Russo A (2009) A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes. Sensors 9:1.21

    Google Scholar 

  • Beyazgül M, Kayam Y, Engelsman F (2000) Estimation methods for crop water requirements in the Gediz Basin of western Turkey. J Hydrol 229(1–2):19–26

    Google Scholar 

  • Black TA, Tanner CB, Gardner WR (1970) Evapotranspiration from a Snap Bean Crop. Agron J 62(1):66–69

    Google Scholar 

  • Brun LJ, Kanemasu ET, Powers WL (1972) Evapotranspiration from soybean and sorghum fields. Agron J 64(2):145–148

    Google Scholar 

  • Brutsaert WH (1982) Evaporation into atmosphere: theory, history and application. Reidel, Dordrecth, 299pp

    Google Scholar 

  • Casa R, Russell G, Lo Cascio B (2000) Estimation of evapotranspiration from a field of linseed in central Italy. Agr Forest Meteorol 104(4):289–301

    Google Scholar 

  • Ceccarelli S, Grando S, Baum M, Udupa SM (2004) Breeding for drought resistance in a changing climate. In: Baker FWG (ed) Drought resistance in cereals. CAB International, Wallingford, pp 167–190

    Google Scholar 

  • Čereković N, Todorović M, Snyder RL (2010) The relationship between leaf area index and crop coefficient for tomato crop grown in southern Italy. Euroinvent 1(1):3–10

    Google Scholar 

  • Choisnel E, de Villele O., Lacroze F (1992) Une approche uniformisée du calcul de l'évapotranspiration potentielle pour l'ensemble des pays de la Communauté Européene. Centre commun de recherche, Commission des communautés Européenne, 178pp

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Google Scholar 

  • Damour G, Simonneau T, Cochard H, Urban L (2010) An overview of models of stomatal conductance at the leaf level. Plant Cell Environ 33(9):1419–1438, pce_2181 1419..1438

    Google Scholar 

  • Daudet FA, Perrier A (1968) Etude de l'évapotranspiration ou de la condensation à la surface d'un corps à partir du bilan énergétique. Rev Gen Therm 76:353–364

    Google Scholar 

  • De Medeiros GA, Arruda FB, Sakai E (2006) Crop coefficient for irrigated beans derived using three reference evaporation methods. Agr Forest Meteorol 135(1–4):135–143

    Google Scholar 

  • De Tar WR (2009) Crop coefficients and water use for cowpea in the San Joaquin Valley of California. Agr Water Manage 96(1):53–66

    Google Scholar 

  • Doorenbos J, Pruitt W O (1977). Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper no. 24. FAO, Rome, Italy, 144pp

  • Doorenbos J, Kassam AH (1979) Yield response to water. FAO Irrigation and Drainage Paper no. 23. FAO, Rome, Italy, 193pp

  • Douglas EM, Beltràn-Przekurat A, Niyogi D, Pielke RA, Vorosmarty CJ (2009) The impact of agricultural intensification and irrigation on land-atmosphere interactions and Indian monsoon precipitation—a mesoscale modeling perspective. Global Planet Change 67(1–2):117–128

    Google Scholar 

  • Espadafor M, Lorite IJ, Gavilàn P, Berengena J (2011) An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain. Agr Water Manage 98(6):1045–1061

    Google Scholar 

  • Er-Raki S, Chehbouni A, Hoedjes J, Ezzahar J, Duchemin B, Jacob F (2008) Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET. Agr Water Manage 95(3):309–321

    Google Scholar 

  • Er-Raki S, Chehbouni A, Guemouria N, Ezzahar J, Khabba S, Boulet G, Hanich L (2009) Citrus orchard evapotranspiration: comparison between eddy covariance measurements and the FAO-56 approach estimates. Plant Biosystems 00:1–8

    Google Scholar 

  • Farahani HJ, Howell TA, Shuttleworth WJ, Bausch WC (2007) Evapotranspiration: progress in measurement and modeling in agriculture. Trans of the ASCE 50:1627–1638

    Google Scholar 

  • Favati F, Lovelli S, Galgano F, Miccolis V, Di Tommaso T, Candido V (2009) Processing tomato quality as affected by irrigation scheduling. Sci Hortic-Amsterdam 122(4):562–571

    Google Scholar 

  • Ferreira MI, Valancogne C, Daudet F.A, Ameglio T, Michaelsen J, Pacheco CA, (1996) Evapotranspiration and crop water relations in a peach orchard, In: Camp C R, Sadler E J, Yoder RE (eds) Evapotranspiration and irrigation scheduling. ASE, San Antonio, pp. 60–68.

  • Ferreira TC, Carr MKV (2002) Responses of potatoes (Solanum tuberosum L.) to irrigation and nitrogen in a hot, dry climate. I. Water use. Field Crop Res 78(1):51–64

    Google Scholar 

  • Fritschen LJ (1967) Net and solar radiation relations over irrigated field crops. Agric Meteorol 4:55–62

    Google Scholar 

  • Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forces estimated from high resolution simulations with a regional climate model. Global Planet Change 62(3–4):195–209

    Google Scholar 

  • Gharsallah O (2010) The canopy resistance for the determination of the actual evapotranspiration on maize crop in Lombardia region. PhD Thesis, University of Milan, Italy, 89pp

  • Hamdy A, Katerji N (2006) Water crisis in the Arab world. Analysis and solutions. IAM-Bari Editor, 60 pp

  • Hamidat A, Benyoucef B, Hartini T (2002) Small-scale irrigation with photovoltaic water pumping system in Sahara regions. Renew Energ 28:1081–1096

    Google Scholar 

  • Hanson BR, May DM (2005) Crop coefficients for drip-irrigated processing tomato. Agr Water Manage 81(3):381–399

    Google Scholar 

  • Hatfield JL (1985) Wheat canopy resistance determined by energy balance technique. Agron J 77(2):279–283

    Google Scholar 

  • Howell TA, Evett SR, Tolk JA, Schneider AD (2004) Evapotranspiration of full-, deficit-irrigated, and dryland cotton on the Northern Texas High Plains. J Irrig Drain E-ASCE 130(4):277–285

    Google Scholar 

  • Irmak S, Mutiibwa D (2009) On the dynamics of stomatal resistance: Relationships between stomatal behaviour and micrometeorological variables and performance of Jarvis-type parameterization. Trans ASABE 52:1923–1939

    Google Scholar 

  • Itier B, Katerji N (1983) Une expression simplifiée de la résistance aérodynamique d'un couvert végétal. Application à la mesure des flux de masse et d'énergie. Acta Oecologica Oecologia Generalis 4(3):215–227 (in French)

    Google Scholar 

  • Jarvis PG (1976) The interpretation of the variation in leaf water potential and stomatal conductance found in canopies. Trans R Soc London Ser B 273:593–610

    Google Scholar 

  • Jensen M E (2010) Historical evolution of estimating methods: a century of progress. CSU/ARSE evapotranspiration, Fort Collins, CO workshop March 12, 2010;17

  • Jensen ME (1968) Water consumption by agricultural plants. In: Kozlowski TT (ed) Water deficits and plant growth, vol 2. Academic, New York, p 122pp

    Google Scholar 

  • Johnson RS, Ayars J, Hsiao T (2004) Improving a model for predicting peach tree evapotranspiration. Acta Hort 664:6

    Google Scholar 

  • Kar G, Verma HN (2005) Phenology based irrigation scheduling and determination of crop coefficient of winter maize in rice fallow of eastern India. Agr Water Manage 75(3):169–183

    Google Scholar 

  • Karam F, Masaad R, Sfeir T, Mounzer O, Rouphael Y (2005) Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions. Agr Water Manage 75(3):226–244

    Google Scholar 

  • Katerji N, Perrier A (1983) Modélisation de l'évapotranspiration réelle d'une parcelle de luzerne: rôle d'un coefficient cultural. Agronomie 3(6):513–521

    Google Scholar 

  • Katerji N, Perrier A, Oulid Aissa AK (1983) Exploration au champ et interprétation de la variation horizontale et verticale de la résistance stomatique: Cas d'une culture de luzerne (Medicago sativa L.). Agronomie 3(9):847–856

    Google Scholar 

  • Katerji N, Perrier A (1985) Détermination de la résistance globale d'un couvert végétal à la diffusion de vapeur d'eau et de ses différentes composantes. Approche théorique e vérification expérimentale sur une culture de luzerne. Agr Meteorol 34(2–3):105–120

    Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M (2003) Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agr Water Manage 62(1):37–66

    Google Scholar 

  • Katerji N, Rana G (2006) Modelling evapotranspiration of six irrigated crops under Mediterranean climate conditions. Agr Forest Meteorol 138(1–4):142–155

    Google Scholar 

  • Katerji N, Mastrorilli M, Rana G (2008) Water use efficiency of crops cultivated in Mediterranean region: review and analysis. Eur J Agron 28(4):493–507

    Google Scholar 

  • Katerji N, Mastrorilli M, Cherni HE (2010a) Effects of corn deficit irrigation and soil properties on water use efficiency. A 25-year analysis of a Mediterranean environment using the STICS model. Eur J Agr 32(2):177–18

    Google Scholar 

  • Katerji N, Rana G, Mastrorilli M (2010b) Modelling of actual evapotranspiration in open top chambers (OTC) at daily and seasonal scale: multi-annual validation on soybean in contrasted conditions of water stress and air ozone. Eur J Agr 33:218–230

    Google Scholar 

  • Katerji N, Mastrorilli M, Lahmar F (2011a) FAO-56 methodology for the stress coefficient evaluation under saline environment conditions: validation on potato and broad bean crops. Agr Water Manage 98(4):588–596

    Google Scholar 

  • Katerji N, Rana G, Fahed S (2011b) Parameterizing canopy resistance using mechanistic and semi-empirical estimates of hourly evapotranspiration: critical evaluation for irrigated crops in the Mediterranean. Hydrol Proc 25(1):117–129

    Google Scholar 

  • Katerji N, Rana G (2011) Crop reference evapotranspiration: a discussion of the concept, analysis of the process and validation. Water Resour Manag 25(6):1581–1600

    Google Scholar 

  • Kreith F, Bohn M (2001) Principles of heat transfer. Brooks/Cole Eds., 700pp

  • Ko J, Piccinni G, Marek T, Howell T (2009) Determination of growth-stage-specific crop coefficients (K c) of cotton and wheat. Agr Water Manage 96(12):1691–1697

    Google Scholar 

  • Lascano RJ (2000) A general system to measure and calculate daily crop water use. Agron J 92(5):821–832

    Google Scholar 

  • Lazzara P, Rana G (2010) The use of crop coefficient approach to estimate actual evapotranspiration: a critical review for major crops under Mediterranean climate. Italian Journal of Agrometeorology 2:25–39

    Google Scholar 

  • Lecina S, Martinez-Cob A, Pérez PJ, Villalobos FG, Baselga JJ (2003) Fixed versus bulk canopy resistance for reference evapotranspiration estimation using the Penman–Monteith equation under semiarid conditions. Agr Water Manage 60(3):181–198

    Google Scholar 

  • Liu G, Liu Y, Hafeez M, XU D, Vote C, (2012) Comparaison of two methods to derive time series of actual evapotranspiration using eddy covariance measurements in the southeastern Australia. J Hydrol 454–455:1–6

    Google Scholar 

  • Lopez-Urrea R, Martın De Santa Olalla F, Montoro A, Lopez-Fuster P (2009) Single and dual crop coefficients and water requirements for onion (Allium cepa L.) under semiarid conditions. Agr Water Manage 96(6):1031–1036

    Google Scholar 

  • Lovelli S, Pizza S, Caponio T, Rivelli AR, Perniola M (2005) Lysimetric determination of muskmelon crop coefficients cultivated under plastic mulches. Agr Water Manage 72(2):147–159

    Google Scholar 

  • Lovelli S, Perniola M, Arcieri M, Rivelli AR, Di Tommaso T (2008) Water use assessment in muskmelon by the Penman–Monteith “one-step” approach. Agr Water Manage 95(10):1153–1160

    Google Scholar 

  • Manuel Casanova P, Ingmar M, Abraham J, Alberto Canete M (2009) Methods to estimate lettuce evapotranspiration in greenhouse conditions in the central zone of Chile. Chilean Journal of Agricultural Research 69(1):60–70

    Google Scholar 

  • Margat J (2008) L'eau des méditerranées. Situation et perspectives. L'Harmattan Ed., 288pp

  • Martinez-Cob A (2007) Use of thermal units to estimate corn crop coefficients under semiarid climatic conditions. Irrigation Sci 26(4):335–345

    Google Scholar 

  • Monteith J L (1965) Evaporation and environment. In: Gogg, G.E. (ed.) the state and movement of water in living organism. Soc. Exp. Biol. Symp., 19, 205–234

  • Monteith JL, Szeicz G, Waggoner PE (1965) The measurement and control of stomatal resistance in the field. J Appl Ecol 2(2):345–355

    Google Scholar 

  • Odhiambo LO, Irmak S (2012) Evaluation of the impact of surface residue cover on single and dual crop coefficient for estimating soybean actual evapotranspiration. Agr Water Manage 104:221–234

    Google Scholar 

  • Orgaz F, Fernandez MD, Bonachela S, Gallardo M, Fereres E (2005) Evapotranspiration of horticultural crops in an unheated plastic greenhouse. Agr Water Manage 72(2):81–96

    Google Scholar 

  • Orgaz F, Villalobos FJ, Testi L, Fereres E (2007) A model of daily mean canopy conductance for calculating transpiration of olive canopies. Funct Plant Biol 34(3):178–188

    Google Scholar 

  • Ortega-Farias SO, Olioso A, Fuentes S, Valdes H (2006) Latent heat flux over a furrow-irrigated tomato crop using Penman–Monteith equation with a variable surface canopy resistance. Agr Water Manage 82(3):421–432

    Google Scholar 

  • Paço TA, Ferreira MI, Conceição N (2006) Peach orchard evapotranspiration in a sandy soil: comparison between eddy covariance measurements and estimates by FAO 56 approach. Agr Water Manage 85(3):305–313

    Google Scholar 

  • Parkes M, Jiang W, Knowles R (2005) Peak crop coefficient values for Shaanxi North-west China. Agr Water Manage 73(2):149–168

    Google Scholar 

  • Pauwels VRN, Samson R (2006) Comparison of different methods to measure and model actual evapotranspiration rates for a wet sloping grassland. Agr Water Manage 82(3):1–24

    Google Scholar 

  • Perego A, Basile A, Bonfante A, De Mascellis R, Terribile F, Brenna S, Acutis M (2012) Nitrate leaching under maize cropping systems in Po Valley (Italy). Agric Ecosyst Env 147:57–65

    Google Scholar 

  • Perez PJ, Lecina S, Castelli F, Martínez-Cob A, Villalobos FJ (2006) A simple parameterization of bulk canopy resistance from climatic variables for estimating hourly evapotranspiration. Hydrol Process 20(3):515–532

    Google Scholar 

  • Perrier A (1975a) Etude physique de l'évapotranspiration dans les conditions naturelles. I. Evaporation et bilan d'énergie des surfaces naturelles. Ann Agron 26:1–18

    Google Scholar 

  • Perrier A (1975b) Etude physique de l'évapotranspiration dans les conditions naturelles. II. Expression et paramètres donnant l'évapotranspiration réelle d'une surface mince. Ann Agron 26:105–123

    Google Scholar 

  • Perrier A (1975c) Etude physique de l'évapotranspiration dans les conditions naturelles. III. Evapotranspiration réelle et potentielle des couverts végétaux. Ann Agron 26:229–243

    Google Scholar 

  • Perrier A. (1976). Etude et mod´elisation des ´echanges de masse et d’´energie au niveau des couverts v´eg´etaux: profils microclimatiques. Evapotranspiration et photosynth`ese nette. Th`ese Doctorat. d’´etat. Universit´e de Paris VI

  • Piccinni G, Ko J, Marek T, Howell T (2009) Determination of growth-stage-specific crop coefficients (Kc) of maize and sorghum. Agr Water Manage 96(12):1698–1704

    Google Scholar 

  • Pruitt W O (1986) “Traditional methods ‘Evapotranspiration research priorities for the next decade’”. ASAE Paper No. 86–2629, 23 p

  • Rana G, Katerji N, Mastrorilli M, El Moujabber M (1994) Evapotranspiration and canopy resistance of grass in a Mediterranean region. Theor Appl Climatol 50(1–2):61–71

    Google Scholar 

  • Rana G, Katerji N, Mastorilli M, El Moujabber M (1997a) A model for predicting actual evapotranspiration under water stress conditions in a Mediterranean region. Theor Appl Climatol 56(1–2):45–55

    Google Scholar 

  • Rana G, Katerji N, Mastorilli M, El Moujabber M, Brisson N (1997b) Validation of a model of actual evapotranspiration for water stresses soybeans. Agr Forest Meteorol 86(3–4):215–224

    Google Scholar 

  • Rana G, Katerji N, Perniola M (2001) Evapotranspiration of sweet sorghum: a general model and multilocal validity in semiarid environmental conditions. Water Resour Res 37(12):3237–3246

    Google Scholar 

  • Rana G, Katerji N, De Lorenzi F (2005) Measurement and modelling of evapotranspiration of irrigated citrus orchard under Mediterranean conditions. Agr Forest Meteorol 128(3–4):199–209

    Google Scholar 

  • Rana G, Katerji N (2008) Direct and indirect methods to simulate the actual evapotranspiration of irrigated overhead table grape vineyard under Mediterranean conditions. Hydrol Process 22(2):181–188

    Google Scholar 

  • Rana G, Katerji N (2009) Operational model for direct determination of evapotranspiration for well watered crops in Mediterranean region. Theor Appl Climatol 97(3):243–253

    Google Scholar 

  • Rana G, Katerji N, Ferrara R, Martinelli N (2011) An operational model to estimate hourly and daily crop evapotranspiration in hilly terrain: validation on wheat and oat crops. Theor Appl Climatol 103(3):413–426

    Google Scholar 

  • Rana G, Katerji N, Lazzara P, Ferrara RM (2012) Operational determination of actual evapotranspiration of irrigated tomato crops under Mediterranean conditions by one- step and two-step models: multiannual and local tests. Agr Water Manage 115:285–296

    Google Scholar 

  • Rinaldi M, Rana G (2004) I fabbisogni idrici del pomodoro da industria in Capitanata. Rivista Italiana di Agrometeorologia 1:31–35

    Google Scholar 

  • Rosenberg N J, Blad L, Verma B (1983) Microclimate: the biological environment (3rd edn). Wiley, New York, 315pp

  • Sahin U, Kuslu Y, Tunc T, Kiziloglu FM (2009) Determining crop and pan coefficients for cauliflower and red cabbage crops under cool season semiarid climatic conditions. Agricultural Science in China 8(2):167–171

    Google Scholar 

  • Shideed K, Oweis T, Gabr M, Osman M (2005) Assessing on-farm water-use efficiency: a new approach. ICARDA/ESCWA Editions, Aleppo, p 86

  • Shi T, Guan D, Wang A, Wu J, Jin C, Han S (2008) Comparison of three models to estimate evapotranspiration for a temperate mixed forest. Hydrol Process 22(17):3431–3443

    Google Scholar 

  • Shuttleworth WJ (2006) Towards one-step estimation of crop water requirements. Trans ASABE 49:925–935

    Google Scholar 

  • Shuttleworth JS, Wallace JS (2009) Calculating the water requirements of irrigated crops in Australia using the Matt–Shuttleworth approach. Trans ASABE 52:1895–1906

    Google Scholar 

  • Smith M, Allen RG, Monteith JL, Perrier A, Pereira L, Segeren A (1992) Report of the expert consultation on procedures for revision of FAO guidelines for prediction of crop water requirements. UN-FAO, Rome, Italy, 54pp

    Google Scholar 

  • Snyder R L, Lanini B J, Shaw D A, Pruitt W O (1989). Using reference evapotranspiration (ETo) and crop coefficients to estimate crop evapotranspiration (ETc.) for agronomic crops, grasses, and vegetable crops. Cooperative Extension, Univ. California, Berkeley, CA, Leaflet No. 21427, 12p

  • Steduto P, Todorovic M, Caliandro A, Rubino P (2003) Daily reference evapotranspiration estimates by the Penman–Monteith equation in southern Italy. Constant vs. variable canopy resistance. Theor Appl Climatol 74(3–4):217–225

    Google Scholar 

  • Steduto, P., Caliandro, A., Rubino, P. Ben Mechlia, N., Masmoudi, M., Martinez-Cob, A., Jose Faci, M., Rana, G., Mastrorilli, M., El Mourid, M., Karrou, M., Kanber, R., Kirda, C., El-Quosy, D., El-Askari, K., Ait Ali, M., Zareb, D., Snyder, R.L., 1996. Penman-Monteith reference evapotranspiration estimates in the Mediterranean region, In: Camp, C.R., Sadler, E.J., Yoder, R.E., (Eds.), Evapotranspiration and Irrigation Scheduling, Proceedings of the International Conference, November 3–6, San Antonio, TX, 357–364

  • Stull RB (1988) An introduction to boundary layer meteorology. Atmospheric Science Library, Kluwer, Dordrecht, 666pp.

  • Szeicz G, Long IF (1979) Surface resistance of crop canopies. Water Resour Res 5:622–633

    Google Scholar 

  • Testi L, Villalobos FJ, Orgaz F (2004) Evapotranspiration of a young irrigated olive orchard in southern Spain. Agr Forest Meteorol 121(1):1–18

    Google Scholar 

  • Todorovic M (1999) Single-layer evapotranspiration model with variable canopy resistance. J Irrig Drain E-ASCE 125(5):235–245

    Google Scholar 

  • Torres AF, Walker WR, McKee M (2011) Forecasting daily potential evapotranspiration using machine learning and limited climatic data. Agr Water Manage 98(4):553–562

    Google Scholar 

  • Uchijima Z (1976) Maize and Rice. In: Monteith JL (ed) Vegetation and the atmosphere, vol 2. Academic, London, pp 33–64

    Google Scholar 

  • Van Wijk WR, De Vries DA (1954) Evapotranspiration. Neth J Agric Sci 2:105–119

    Google Scholar 

  • Vazquez N, Pardo A, Suso ML, Quemada M (2005) Drainage and nitrate under processing tomato growth with drip irrigation and plastic mulching. Agric Ecosys Envir 122(3):313–323

    Google Scholar 

  • Ventura F, Spano D, Duce P, Snyder RL (1999) An evaluation of common evapotranspiration equations. Irrigation Sci 18(4):163–170

    Google Scholar 

  • Villalobos FJ, Testi L, Rizzalli R, Orgaz F (2004) Evapotranspiration and crop coefficients of irrigated garlic (Allium sativum L.) in a semi-arid climate. Agr Water Manage 64(3):233–249

    Google Scholar 

  • Villalobos FJ, Testi L, Moreno-Perez MF (2009) Evaporation and canopy conductance of citrus orchards. Agr Water Manage 96(4):565–573

    Google Scholar 

  • Vitale D, Rana G, Soldo P (2010) Trends and extremes analysis of daily weather data from a site in the Capitanata plain (southern Italy). Ital J Agron 5(2):133–143

    Google Scholar 

  • Vu HS, Watanabe H, Takagi K (2005) Application of FAO-56 for evaluating evapotranspiration in simulation of pollutant runoff from paddy rice field in Japan. Agr Water Manage 76(3):195–210

    Google Scholar 

  • Wild A (2003) Soils, land and food managing the land during the twenty-first century. Cambridge Univ Press, Cambridge, 256pp

  • Williams LE, Phene CJ, Grimes DW, Trout TJ (2003) Water use of mature Thomson Seedless grapevines in California. Irrigation Sci 22(1):11–18

    Google Scholar 

  • Williams LE, Ayars JE (2005) Grapevine water use and crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric Forest Meteorol 132(3–4):201–211

    Google Scholar 

  • Wright J L (1981) Crop coefficients for estimates of daily crop evapotranspiration. Irrig. Scheduling for Water and Energy Conserv. in the 80's. Am. Soc. Agric. Engr. (Dec.), 18–26

  • Wright JL (1982) New evapotranspiration crop coefficients. J Irrig Drain Div ASCE 108(1):57–74

    Google Scholar 

  • Yacoubi S, Zayani K, Zapata N, Zairi A, Slatni A, Salvador R, Playan E (2010) Day and night time sprinkler irrigated tomato: irrigation performance and crop yield. Biosyst Eng 107(1):25–35

    Google Scholar 

  • Yunusa IAM, Walker RR, Lu P (2004) Evapotranspiration component from energy balance, sapflow and microlysimetry techniques for an irrigated vineyard in inland Australia. Agr Forest Meteor 127(1–2):93–107

    Google Scholar 

  • Zhang Q, Xu C-Y, Chen X (2010) Reference evapotranspiration changes in China: natural processes or human influences? Theor Appl Climatol 103(3–4):379–388

    Google Scholar 

  • Zhang X, Chen S, Sun H, Shao L, Wang Y (2011) Changes in evapotranspiration over irrigated winter wheat and maize in North Chine Plain over three decades. Agr Water Manage 98(6):1107–1104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Rana.

Appendix I

Appendix I

The Eq. (1) can be written in the following form:

$$ \lambda E=\frac{A+\rho {c}_pD/\left({r}_a\varDelta \right)}{1+\left(\gamma /\varDelta \right)\left(1+{r}_c/{r}_a\right)} $$
(Ia)

thus the actual evapotranspiration can we considered as function of several variables as:

$$ \lambda E=f\left({r}_c,A,D,{r}_a,\rho {c}_p,1/\varDelta \right) $$
(Ib)

The dimensional analysis based on the π-theorem by Buckingham stated that a function depending on n variables of m dimension can be studied by means of nm dimensionless groups; so the relationship between the canopy resistance r c and the other variables can be written as:

$$ g\left({r}_c,A,D,{r}_a,\rho {c}_p,1/\varDelta \right)=0 $$
(Ic)

Since in the present case the involved units are 4 (mass M, length L, time t and temperature T) and the number of variable is 6, we can search for a relationship involving 6 − 4 = 2 groups of dimensionless combination of variables to describe the canopy resistance. Katerji and Perrier (1983) choose the following four main variables (among the 6 above mentioned) to establish the two dimensionless groups:

$$ \begin{array}{c}\hfill A\hfill \\ {}\hfill D\hfill \\ {}\hfill {r}_a\hfill \\ {}\hfill \rho {c}_p\hfill \end{array}\kern2em \begin{array}{c}\hfill M{t}^{-1}\hfill \\ {}\hfill M{L}^{-1}t\hfill \\ {}\hfill t{L}^{-1}\hfill \\ {}\hfill M{L}^{-1}{T}^{-1}{t}^{-2}\hfill \end{array} $$

These variables can be combined with the ones in the Eq. (Ic) in order to give two dimensionless groups and to give the value 1 for the other variables as:

$$ g\left(\frac{r_c}{r_a},1,1,1,1,\frac{\rho {c}_pD}{\varDelta {r}_aA}\right)=0 $$
(Id)

By taking into account the definition of the critical resistance r * [see Eq. (16)], the above relationship can be written under the form:

$$ g\left(\frac{r_c}{r_a},1,1,1,1,\frac{\gamma }{\varDelta +\gamma}\frac{r^{*}}{r_a}\right)=0 $$
(Ie)

This means that we can search for a relationship between \( \frac{r_c}{r_a} \) and \( \frac{\gamma }{\gamma +\varDelta}\frac{r^{*}}{r_a} \) or, since the term \( \frac{\gamma }{\gamma +\varDelta } \) is almost constant and dimensionless, between \( \frac{r_c}{r_a} \) and \( \frac{r^{*}}{r_a} \), which was found (Katerji and Perrier 1983) to be linear under the form

$$ \frac{r_c}{r_a}=a\frac{r^{*}}{r_a}+b $$
(If)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katerji, N., Rana, G. FAO-56 methodology for determining water requirement of irrigated crops: critical examination of the concepts, alternative proposals and validation in Mediterranean region. Theor Appl Climatol 116, 515–536 (2014). https://doi.org/10.1007/s00704-013-0972-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-0972-3

Keywords

Navigation