Skip to main content

Advertisement

Log in

Long-term winter temperatures in central Mediterranean: forecast skill of an ensemble statistical model

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This study proposes a forecast skill scheme for winter temperatures in the central Mediterranean Sub-regional Area. An original series of mean winter (December to February) temperatures spanning the period 1698–2010 is the basis for developing long-term climate prediction. A procedure was identified where a predictable structure was first provided by reducing noise via the Empirical Mode Decomposition method and then an Ensemble Climate Prediction (ECP) was applied. The predictability limit of the decomposed series was assessed by applying a collection of methods from linear and nonlinear time series analysis (Hurst coefficients, Lyapunov exponents and wavelet patterns). The analysis was based on a set of tools that are suitable to discover the manifestation of a possible trajectory of projected temperature change. The progress of the winter temperature forecast was inferred by an Exponential Smoothing with a Damped (ESD) multiplicative trend model. ECP-ESD hindcast experiments were tested and ensemble forecasts run until the year 2040. ECP-ESD yields an ensemble mean path that consists: (1) of a sharp decline in winter temperature in the current decade; (2) more widespread predictions for 2020–2030, with fluctuations near the present multi-decadal average; and (3) a sharp warming for the 2030–2040 decade. Our results are compatible with projections for European winters and major climatic indices such as the Pacific Decadal Oscillation and the Atlantic Multi-decadal Oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abarbanel HDI (1996) Analysis of observed chaotic data. Springer, New York

  • Alexandersson H, Moberg A (1997) Homogenization of Swedish temperature data. Part I: homogeneity test for linear trends. Int J Climatol 17:25–34

    Article  Google Scholar 

  • Alexiadis A (2007) Global warming and human activity: a model for studying the potential instability of the carbon dioxide/temperature feedback mechanism. Ecol Model 203:243–256

    Article  Google Scholar 

  • Armstrong JS (2001) Combining forecasts. In: Armstrong JS (ed) Principles of forecasting: a handbook for researchers and practitioners. Kluwer Academic Publishers, Norwell, pp 1–19

    Chapter  Google Scholar 

  • Arnell NW, Delaney EK (2006) Adapting to climate change: public water supply in England and Wales. Clim Chang 78:227–255

    Article  Google Scholar 

  • Barriendos Vallve M, Martin-Vide J (1998) Secular climatic oscillations as indicated by catastrophic floods in the Spanish Mediterranean coastal area (14th–19th centuries). Clim Chang 38:473–491

    Article  Google Scholar 

  • Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control, revised edition. Holden-Day, San Francisco

    Google Scholar 

  • Camuffo D, Jones P (2002) Improved understanding of past climatic variability from early daily European Instrumental Sources. Kluwer, Dordrecht

    Book  Google Scholar 

  • Camuffo D, Bertolin C, Barriendos M, Dominguez-Castro F, Cocheo C, Enzi S, Sghedoni M, della Valle A, Garnier E, Alcoforado MJ, Xoplaki E, Luterbacher J, Diodato N, Maugeri M, Nunes MF, Rodriguez R (2010) 500-year temperature reconstruction in the Mediterranean Basin by means of documentary data and instrumental observations. Clim Chang 101:169–199

    Article  Google Scholar 

  • Cattiaux J, Vautard R, Cassou C, Yiou P, Masson-Delmotte V, Codron F (2010) Winter 2010 in Europe: a cold extreme in a warming climate. Geophys Res Lett 37, L20704

  • Celka P, Vetter R, Gysels E, Trevor JH (2006) Dealing with randomness in biosignals. In: Schelter B, Winterhalder M, Timmer J (eds) Handbook of time series analysis. Wiley, Weinheim, pp 89–130

    Chapter  Google Scholar 

  • Cess RD, Zhang M-H, Potter GL, Barker HW, Colman RA, Dazlich DA, Del Genio AD, Esch M, Fraser JR, Galin V, Gates WL, Hack JJ, Ingram WJ, Kiehl JT, Lacis AA, Le Treut H, Li Z-X, Liang X-Z, Mahfouf J-F, McAvaney BJ, Meleshko VP, Morcrette J-J, Randall DA, Roeckner E, Royer J-F, Sokolov AP, Sporyshev PV, Taylor KE, Wang W-C, Wetherald RT (1993) Uncertainties in carbon dioxide radiative forcing in atmospheric general circulation models. Science 262:1252–1255

    Article  Google Scholar 

  • Clements MP, Hendry DF (2008) Economic forecasting in a changing world. Capitalism and Society 3(2): article 1

  • Cunningham SA, Marsh R (2010) Observing and modeling changes in the Atlantic MOC. Wiley Interdisci Rev Clim Change 1:180–191

    Google Scholar 

  • Datig M, Schlurmann T (2004) Performance and limitations of the Hilbert-Huang Transformation (HHT) with an application to irregular water waves. Ocean Eng 31:1783–1834

    Article  Google Scholar 

  • Derham W (1733–1734) An abstract of the Meteorological Diaries, communicated to the Royal Society, with re-marks upon them, by Derham W, DD Canon of Windsor, F RS [Vide Part III. In Transact. No 433.] Part IV. Philosophical Transactions (1683–1775) 38:405–412

  • Dikbas F, Firat M, Koc AC, Güngör M (2010) Homogeneity test for Turkish temperature series. 4th BALWOIS 2010 International Conference, 25–29 May, Ohrid, Macedonia

  • Diodato N, Bellocchi G (2011a) Discovering the anomalously cold Mediterranean winters during the Maunder minimum. Holocene 22:589–596

    Article  Google Scholar 

  • Diodato N, Bellocchi G (2011b) How predictable are temperature-series undergoing noise-controlled dynamics in the Mediterranean. Nature Preceedings. http://dx.doi.org/10.1038/npre.2011.5786.1

  • Diodato N, Bellocchi G, Bertolin C, Camuffo D (2012) Mixed nonlinear regression for modelling historical temperatures in Central-Southern Italy. Theoretical and Applied Climatology, doi:10.1007/s00704-012-0775-y

  • Draxler RR (2003) Evaluation of an ensemble dispersion calculation. J Appl Meteorol 42:308–317

    Article  Google Scholar 

  • Eckmann J-P, Kamphorst SO, Ruelle B (1987) Recurrence plots of dynamical systems. Europhys Lett 4:973–977

    Article  Google Scholar 

  • Enzi S, Camuffo D (1996) Effetti del riscaldamento globale nel Mezzogiorno: ricostruzione della storia ambientale nell’Optimum climatico medievale. In: Guerrini A (ed) Atti del 4° Workshop Progetto Strategico Clima Ambiente e Territorio del Mezzogiorno, Ith edn. Italian National Research Council, Lecce, pp 7–72

    Google Scholar 

  • Faraway J, Chatfield C (1998) Time series forecasting with neural networks: a comparative study using the airline data. Applied Statistics 47:231–250

    Google Scholar 

  • Fischer-Bruns I, Banse D F, Feichter J (2009) Future impact of anthropogenic sulfate aerosol on North Atlantic climate. Clim Dynam 32:511–524

    Google Scholar 

  • Foley AM (2010) Uncertainty in regional climate modelling: a review. Prog Phys Geogr 34:647–670

    Article  Google Scholar 

  • Furtado JC, Di Lorenzo E, Schenider N, Bond NA (2011) North Pacific decadal variability and climate change in the IPCC AR4 models. J Clim 24:3049–3067

    Article  Google Scholar 

  • Garnaut R (2008) The Garnaut climate change review: final report. http://www.garnautreview.org.au/index.html

  • Garrett T, Leatherman J (2000) An introduction to state and local public finance. Regional Research Institute, West Virginia University, Morgantown, WV, USA

  • Gheyas I, Smith L (2009) A neural network approach to time series forecasting. Proceedings of the World Congress on Engineering, vol. 2, London, UK

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104

    Article  Google Scholar 

  • Grassberger P (1986) Do climatic attractor exist? Nature 323:609–612

    Article  Google Scholar 

  • Hawkins M (1977) Testing a sequence of observations for a shift in location. J Am Stat Assoc 72:180–186

    Article  Google Scholar 

  • Hertig E, Jacobeit J (2011) Predictability of Mediterranean climate variables from oceanic variability. Part II: statistical models for monthly precipitation and temperature in the Mediterranean area. Clim Dyn 36:825–843

    Article  Google Scholar 

  • Huang NE, Attoh-Okine N (2006) Hilbert Huang Transform in engineering. CRC Press, Boca Raton

    Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MC, Shih EH, Zheng Q, Tung CC, Liu HH (1998) The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis. Proc R Soc A Math Phys Eng Sci 454:903–995

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR (1999) A new view of nonlinear water waves: the Hilbert spectrum. Annu Rev Fluid Mech 31:417–457

    Article  Google Scholar 

  • Hulme M, Mahony M (2010) Climate change: what do we know about the IPCC? Prog Phys Geogr 34:705–718

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North-Atlantic Oscillation—regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Hyndman RJ, Koehler AB, Ord JK, Snyder RD (2008) Forecasting with exponential smoothing: the state space approach. Springer, Berlin

    Book  Google Scholar 

  • Kawamura A, McKerchar AI, Spigel RH, Jinno K (1998) Chaotic characteristics of the Southern Oscillation Index time series. J Hydrol 204:168–181

    Article  Google Scholar 

  • Knutti R, Hegerl GC (2008) The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat Geosci 1:735–743

    Article  Google Scholar 

  • Knutti R, Stocker TF, Joos F, Plattner G-K (2003) Probabilistic climate change projections using neural networks. Clim Dyn 21:257–272

    Article  Google Scholar 

  • Knutti R, Allen MR, Friedlingstein P, Gregory JM, Hegerl GC, Meehl GA, Meinshausen M, Murphy JM, Plattner G-K, Raper SCB, Stocker TF, Stott PA, Teng T, Wigley TML (2008) A review of uncertainties in global temperature projections over the twenty-first century. J Clim 21:2651–2663

    Article  Google Scholar 

  • Kollengodu-Subramanian S, Srinivasan B, Zhao J, Rengaswamy R, McKenna GB (2011) Application of empirical mode decomposition in the field of polymer physics. J Polymer Sci, Part B: Polymer Phys 49:277–290

    Article  Google Scholar 

  • Kravtsov S, Spannagle C (2008) Multi-decadal climate variability in observed and simulated surface temperatures. J Clim 21:1104–1121

    Article  Google Scholar 

  • Küttel M, Luterbacher J, Wanner H (2011) Multidecadal changes in winter circulation-climate relationship in Europe: frequency variations, within-type modifications and long-term trends. Clim Dyn 36:957–972

    Article  Google Scholar 

  • Lean JL, Rind DH (2009) How will Earth’s surface temperature change in future decades? Geophys Res Lett 36, L15708

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier Science, Amsterdam

    Google Scholar 

  • Liu L, Hong Y, Hocker JE, Shafer MA, Carter LA, Gourley JJ, Bednarczyk CN, Yong B, Adhikari P (2012) Analyzing projected changes and trends of temperature and precipitation in the southern USA from 16 downscaled global climate models. Theor Appl Climatol 109:345–360

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Luterbacher J, Xoplaki E (2003) 500-year winter temperature and precipitation variability over the Mediterranean area and its connection to the large-scale atmospheric circulation. In: Bolle H-J (ed) Mediterranean climate: variability and trends. Springer, Berlin, pp 133–153

    Chapter  Google Scholar 

  • Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002) Reconstruction of Sea Level Pressure fields over the eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561

    Article  Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503

    Article  Google Scholar 

  • Madden RA (1976) Estimates of the natural variability of time-averaged sea-level pressure. Mon Weather Rev 104:942–952

    Article  Google Scholar 

  • Marsh GE (2009) Climate change: sources of warming in the late 20th century. http://www.gemarsh.com/wp-content/uploads/Climate%20Change-NorthAtlanticOscillation.pdf

  • Mazzarella A (2009) Sun-climate linkage now confirmed. Energy Environ 20:121–1281

    Article  Google Scholar 

  • Mazzarella A, Giuliacci A, Liritzis I (2010) On the 60-month cycle of multivariate ENSO index. Theor Appl Climatol 100:23–27

    Article  Google Scholar 

  • McClain JO (1974) Dynamics of exponential smoothing with trend and seasonal terms. Manag Sci 20:1300–1304

    Article  Google Scholar 

  • McKenzie E, Gardner ES Jr (2010) Damped trend exponential smoothing: a modelling viewpoint. Int J Forecast 26:661–665

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins W, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

  • Michaels A, Close A, Malmquist D, Knap A (1997) Climate science and insurance risk. Nature 389:225–227

    Article  Google Scholar 

  • Mochizuki T, Ishii M, Kimoto M, Chikamoto Y, Watanabe M, Nozawa T, Sakamoto TT, Shiogama H, Awaji T, Sugiura N, Toyoda T, Yasunaka S, Tatebe H, Moric M (2010) Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc Natl Acad Sci U S A 107:1833–1837

    Article  Google Scholar 

  • Nakćenović N, Alcamo J, Davis G, De Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung T, Kram T, Lebre La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios. Cambridge University Press, Cambridge, A special report of Working Group III of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • Nathan J, Kravtsov S (2010) Decadal variations of North Atlantic sea surface temperature in observations and CMIP3 simulations. J Clim 23:4619–4636

    Article  Google Scholar 

  • Netoff TI, Carrol TL, Pecora LM, Schiff SJ (2006) Detecting coupling in the presence of noise and nonlinearity. In: Schelter B, Winterhalder M, Timmer J (eds) Handbook of time series analysis. Wiley, Weinheim, pp 265–282

    Chapter  Google Scholar 

  • Nicholls N (2010) Why do we care about past climates? An editorial essay. Wiley Interdiscip Rev Clim Chang 1:155–157

    Google Scholar 

  • Nicolis C, Nicolis G (1984) Is there a climatic attractor? Nature 311:529–532

    Article  Google Scholar 

  • Nicolis C, Nicolis G (1986) Reconstruction of the dynamics of the climatic system from time-series data. Proc Natl Acad Sci U S A 83:536–540

    Article  Google Scholar 

  • Nikovski D, Ramachandran G (2009) Memory-based modeling of seasonality for prediction of climatic time series. Lect Notes Comput Sci 5632:734–748

    Article  Google Scholar 

  • Ott E (2002) Chaos in dynamical systems, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Ottera OH, Bentsen M, Drange H, Suo LL (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694

    Article  Google Scholar 

  • Palastanga V, van der Schrier G, Weber SL, Kleinen T, Briffa KR, Osborn TJ (2010) Atmosphere and ocean dynamics: contributors to the European Little Ice Age? Clim Dyn 36:973–987

    Article  Google Scholar 

  • Paltridge GW (2009) The climate caper. Quartet Books, London

    Google Scholar 

  • Parker D, Folland C, Scaife A, Knight J, Colman A, Baines P, Dong B (2007) Decadal to multidecadal variability and the climate change background. J Geophys Res 112, D18115

  • Pegels CC (1969) Exponential forecasting: some new variations. Manag Sci 15:311–315

    Article  Google Scholar 

  • Peng P, Kumar A, Yang W (2011) An analysis of seasonal predictability in coupled model forecasts. Clim Dyn 36:637–648

    Article  Google Scholar 

  • Perry CA, Hsu KJ (2000) Geophysical, archaeological, and historical evidence support a solar-output model for climate change. Proc Natl Acad Sci U S A 97:12433–12438

    Article  Google Scholar 

  • Pettitt AN (1979) A non parametric approach to the change point problem. Appl Stat 28:126–135

    Article  Google Scholar 

  • Pohlmann H, Sienz F, Latif M (2006) Influence of the multidecadal Atlantic meridional overturning circulation variability on European climate. J Clim 19:6062–6067

    Article  Google Scholar 

  • Pozo-Vázquez D, Esteban-Parra MJ, Rodrigo FS, Castro-Diez Y (2001) A study of NAO variability and its possible non-linear influences on European surface temperature. Clim Dyn 17:701–715

    Article  Google Scholar 

  • Quassim MS, Attia AF (2005) Forecasting the global temperature trend according to the predicted solar activity during the next decades. Memoire della Società Astronomica Italiana 76:1030–1033

    Google Scholar 

  • Quian B, Rasheed K (2004) Hurst exponent and financial market predictability. 2nd IASTED International Conference on Financial Engineering and Applications, 8–11 November, Cambridge, MA, USA

  • Rasmussen R (2004) On time series data and optimal parameters. Omega 32:111–120

    Article  Google Scholar 

  • Roe GH, Baker MB (2007) Why is climate sensitivity so unpredictable? Science 318:629–632

    Article  Google Scholar 

  • Salisbury JI, Wimbush M (2002) Using modern time series analysis techniques to predict ENSO events from the SOI time series. Nonlinear Processes Geophys 9:341–345

    Article  Google Scholar 

  • Saussol B, Troubetzkoy S, Vaienti S (2002) Recurrence, dimensions, and Lyapunov exponents. J Stat Phys 106:623–634

    Article  Google Scholar 

  • Seager R, Kushnir Y, Nakamura J, Ting M, Naik N (2010) Northern hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophys Res Lett 37, L14703

  • Semenov V, Latif M, Dommenget D, Keenlyside N, Strehz A, Martin T, Park W (2010) The impact of North Atlantic-Arctic multidecadal variability on northern hemisphere surface air temperature. J Clim 23:5668–5677

    Article  Google Scholar 

  • Sheng H, Chen YQ (2009) Robustness analysis of the estimators for noisy long-range dependent time series. ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, San Diego, CA, USA

  • Smith TS, Karl TR, Reynolds RW (2002) How accurate are climate simulations? Science 296:483–484

    Article  Google Scholar 

  • Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor MMB, Miller HL, editors (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK

  • Solomon A, Goddard L, Kumar A, Carton J, Deser C, Fukumori I, Greene A, Hegerl G, Kirtman B, Kushnir Y, Newman M, Smith D, Vimont D, Delworth T, Meehl J, Stockdale T (2010) Distinguishing the roles of natural and anthropogenically forced decadal climate variability: implications for prediction. Bull Am Meteorol Soc 92:141–156

    Article  Google Scholar 

  • Spencer RW (2010) The great global warming blunder: how mother nature fooled the world’s top climate scientists. Encounter Books, Jackson

    Google Scholar 

  • Stott PA, Gillett NP, Hegerl GC, Karoly DJ, Stone DA, Zhang X, Zwiers F (2010) Detection and attribution of climate change: a regional perspective. Interdiscip Rev Clim Chang 1:192–211

    Google Scholar 

  • Swanson KL, Sugihara G, Tsonis AA (2009) Long-term natural variability and 20th century climate change. Proc Natl Acad Sci U S A 106:16120–16123

    Article  Google Scholar 

  • Taylor JW (2003) Exponential smoothing with a damped multiplicative trend. Int J Forecast 19:715–725

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. B Am Meteorol Soc 79:61–78

  • Trenberth KE, Fasullo JT (2010) Simulation of present-day and twenty-first-century energy budgets of the Southern Oceans. J Clim 23:440–454

    Article  Google Scholar 

  • Tung W, Gao J, Hu J, Yang L (2011) Recovering chaotic signals in heavy noise environments. Physical Review. E, Statistical, nonlinear, and soft matter physics 83, 046210.

  • Van Oldenborgh GJ, Drijfhout S, van Ulden A, Haarsma R, Sterl A, Severijins C, Hazeleger W, Dijkstra H (2009) Western Europe is warming much faster than expected. Clim Past 5:1–12

    Article  Google Scholar 

  • Vargas-Yáñez M, García MJ, Salat J, García-Martínez MC, Pascual J, Moya F (2008) Warming trends and decadal variability in the Western Mediterranean shelf. Glob Planet Chang 63:177–184

    Article  Google Scholar 

  • Viola FM, Paiva SLD, Savi MA (2010) Analysis of the global warming dynamics from temperature time series. Ecol Model 22:1964–1978

    Article  Google Scholar 

  • Von Bloh W, Romano MC, Thiel M (2005) Long-term predictability of mean daily temperature data. Nonlinear Process Geophys 12:471–479

    Article  Google Scholar 

  • Weaver AJ, Hillaire-Marcel C (2004) Ice growth in the greenhouse: a seductive paradox but unrealistic scenario. Geosci Can 31:77–85

    Google Scholar 

  • Weber SL (2010) The utility of Earth system Models of Intermediate Complexity (EMICs). Wiley Interdiscip Rev Clim Chang 1:243–252

    Article  Google Scholar 

  • Wigley TML (1992) Future climate of the Mediterranean Basin with particular emphasis in changes in precipitation. In: Jeftic L, Milliman JD, Sestini G (eds) Climate change in the Mediterranean. Arnold, London, pp 15–44

    Google Scholar 

  • Wijngaard JB, Klein Tank AMG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Clim 23:679–692

    Article  Google Scholar 

  • Wood R (2008) Climate change: natural ups and downs. Nature 453:43–45

    Article  Google Scholar 

  • Woollings T (2010) Dynamical influences on European climate: an uncertain future. Philos Trans R Soc A Math Phys Eng Sci 368:3733–3756

    Article  Google Scholar 

  • Wu Z, Huang NE (2008) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41

    Article  Google Scholar 

  • Xu C, Gertner GZ, Scheller RM (2009) Uncertainties in the response of a forest landscape to global climatic change. Glob Chang Biol 15:116–131

    Article  Google Scholar 

  • Yang P, Wang G, Bian J, Zhou X (2010) The prediction of non-stationary climate series based on empirical mode decomposition. Adv Atmos Sc 27:845–854

    Article  Google Scholar 

  • Yearley S (2009) Sociology and climate change after Kyoto: what roles for social science in understanding climate change? Curr Sociol 57:389–405

    Article  Google Scholar 

  • Zivcovic T (2011) The predictability analysis of the annual temperature reconstructions. Geophys Res Abstr 13:EGU2011–13009

    Google Scholar 

Download references

Acknowledgments

This study is an investigators-driven research run without grant support. Andrew Edmonds of Scientio (West Palm Beach, FL, USA) helped us in addressing the chaotic nature of temperature series. Norden E. Huang (Laboratory for Hydrospheric Processes/Oceans and Ice Branch, NASA Goddard Space Flight Center, Greenbelt, MD, USA) and Peicai Yang (Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China) introduced us to the capability of using Empirical Mode Decomposition technique to separate transient noise from data. Aleksandar Kalauzi (Institute for Multidisciplinary Research, University of Belgrade, Serbia), José-Manuel Zaldívar Comenges (Institute for Health and Consumer Protection, European Commission Joint Research Centre of Ispra, Italy), Awadhesh Prasad (Department of Physics & Astrophysics, University of Delhi, India) and Reik Donner (Institute for Climate Impact Research of Potsdam, Germany) are acknowledged for clarifying comments on theoretical aspects of predictability analysis and critical interpretation of recurrence plots. The authors also acknowledge Guglielmo Lacorata (Institute of Atmospheric Sciences and Climate, Italian National Research Council, Lecce, Italy) and Piero Lionello (Department of Science of Materials, University of Salento, Lecce, Italy) for several stimulating discussions on the subject of this paper. They are also grateful to three anonymous Referees on improving the manuscript, and to Anna Mancini for editing English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Bellocchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diodato, N., Bellocchi, G. Long-term winter temperatures in central Mediterranean: forecast skill of an ensemble statistical model. Theor Appl Climatol 116, 131–146 (2014). https://doi.org/10.1007/s00704-013-0915-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-0915-z

Keywords

Navigation