Skip to main content

Advertisement

Log in

Numerical investigations of extreme winds over Switzerland during 1990–2010 winter storms with the Canadian Regional Climate Model

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This study reports on the ability of the Canadian Regional Climate Model to simulate the surface wind gusts of 24 severe mid-latitude storms in Switzerland during the period 1990–2010. A multiple self-nesting approach is used, reaching a final 2-km grid which is centred over Switzerland, a country characterised by complex topography. A physically-based wind gust parameterization scheme is applied to simulate local surface gusts. Model performance is evaluated by comparing simulated wind speeds to time series at weather stations. While a number of simulated variables are reproduced in a realistic manner, the surface wind gusts show differences when compared to observed values. Results indicate that the performance of this parameterization scheme not only depends on the accuracy of the simulated planetary boundary layer, the vertical temperature, wind speed and atmospheric humidity profiles, but also on the accuracy of the reproduction of the surface fields such as temperature and moisture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Figure 7

Similar content being viewed by others

References

  • Abdella K, McFarlane N (1997) A new second order turbulence closure for the planetary boundary layer. J Atmos Sc 54:1850–1867

    Article  Google Scholar 

  • Agustsson H, Olafsson H (2004) Mean gust factors over complex terrain. Meteorol Z 13:149–155

    Article  Google Scholar 

  • Ágústsson H, Ólafsson H (2009) Forecasting wind gusts in complex terrain. Meteorol Atmos Phys 103:173–185. doi:10.1007/s00703-008-0347-y

    Article  Google Scholar 

  • Alexandru A, de Elia R, Laprise R et al (2009) Sensitivity study of regional climate model simulations to large-scale nudging parameters. Mon Wea Rev 137:1666–1686. doi:10.1175/2008MWR2620.1

    Article  Google Scholar 

  • Al-Yahyai S, Charabi Y, Gastli A et al (2012) Assessment of wind energy potential locations in Oman using data from existing weather stations. Renew Sustain Energy Rev 14:1428–1436

    Article  Google Scholar 

  • Antic SR, Laprise BD, de Elía R (2005) Testing the downscaling ability of a one-way nested regional climate model in regions of complex topography. Clim Dyn 23:473–493

    Article  Google Scholar 

  • Bantle, H. (1989) Program documentation for the Swiss climate data base at the computing centre of ETH Zurich, MeteoSwiss publication, Zurich, Switzerland, 8 pp. www.meteoswiss.ch. Accessed 23 Nov 2012

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Barredo JI (2010) No upward trend in normalised windstorm losses in Europe: 1970–2008. Nat Hazards Earth Syst Sci 10:97–104

    Article  Google Scholar 

  • Begert M, Schlegel T, Kirchhofer W (2005) Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25:65–80. doi:10.1002/joc.1118

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543. doi:10.1175/jcli3815.1

    Article  Google Scholar 

  • Belŭsić D, Klaić ZB (2004) Estimation of Bora wind gusts using a limited area model. Tellus 56A:296–307

    Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB et al (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95. doi:10.1007/s10584-006-9226-z

    Article  Google Scholar 

  • Benoît R, Desgagne M, Pellerin P et al (1997) The Canadian MC2: a semi-Lagrangian, semi-implicit wideband atmospheric model suited for fine scale process studies and simulation. Mon Weather Rev 125:2382–2415

    Article  Google Scholar 

  • Blackadar AK (1962) Vertical distribution of wind and turbulent exchange in a neutral atmosphere. J Geophys Res 67:3095–3102

    Article  Google Scholar 

  • Bohle-Carbonell M (1991) Wind and currents-response patterns of Lake Geneva. Ann Geophys-Atmos Hydrospheres and Space Sci 9:82–90

    Google Scholar 

  • Born K, Ludwig P, Pinto JG (2012) Wind gust estimation for Mid-European winter storms: towards a probabilistic view. Tellus A 64:17471. doi:10.3402/tellusa.v64i0.17471

    Article  Google Scholar 

  • Brasseur O (2001) Development and application of a physical approach to estimating wind gusts. Mon Weather Rev 129:5–25

    Article  Google Scholar 

  • Brasseur O, Gallée H, Boyen H et al (2002) Reply. Mon Weather Rev 130:1936–1942

    Article  Google Scholar 

  • Burk SD, Thompson WT (2002) Comments on “Development and application of a physical approach to estimating wind gusts”. Mon Weather Rev 130:1933–1935

    Article  Google Scholar 

  • Bresch, D. N., Bisping, M., and Lemecke, G. (2000) Storm over Europe: an underestimated risk, Swiss Reinsurance Company, 27 pp. www.swissre.com. Accessed 23 Nov 2012

  • Caya D, Laprise R (1999) A semi-implicit semi Lagrangian regional climate model: the Canadian RCM. Mon Weather Rev 127:341–362

    Article  Google Scholar 

  • Champeaux JL, Masson V, Chauvin R (2005) ECOCLIMAP: a global database of land surface parameters at 1 km resolution. Meteorol Appl 12:29–32. doi:10.1017/S1350482705001519

    Article  Google Scholar 

  • Della-Marta PM, Liniger MA, Appenzeller C et al (2010) Improved estimates of the European winter windstorm climate and the risk of reinsurance loss using climate model data. J Appl Meteorol Climatol 49:2092–2120. doi:10.1175/2010JAMC2133.1

    Article  Google Scholar 

  • Denis B, Laprise R, Caya D et al (2002) Downscaling ability of one-way-nested regional climate models: the Big-Brother Experiment. Clim Dyn 18:627–646

    Article  Google Scholar 

  • Durst CS (1960) Wind speeds over short period of time. Meteor Mag 89:181–187

    Google Scholar 

  • Etienne C, Lehmann A, Goyette S et al (2010) Spatial predictions of extreme wind speeds over Switzerland using generalized additive models. J Appl Meteor Climatol 49:1956–1970. doi:10.1175/2010jamc2206.1

    Article  Google Scholar 

  • Fischer-Bruns I, von Storch H, Gonzalez-Rouco JF et al (2005) Modelling the variability of midlatitude storm activity on decadal to century time scales. Clim Dyn 25:461–476. doi:10.1007/S00382-005-0036-1

    Article  Google Scholar 

  • Furger M (1992) The radiosoundings of Payerne: aspects of the synoptic-dynamic climatology of the wind field near mountain ranges. Theor Appl Climatol 45:3–17. doi:10.1007/bf00865989

    Article  Google Scholar 

  • Goyette S, McFarlane NA, Flato GM (2000) Application of the Canadian Regional Climate Model to the Laurentian Great Lakes region: implementation of a lake model. Atmos Ocean 38:481–503

    Article  Google Scholar 

  • Goyette S, Beniston M, Caya D et al (2001) Numerical investigation of an extreme storm with the Canadian Regional Climate Model: the case study of windstorm Vivian, Switzerland, February 27, 1990. Clim Dyn 18:145–178

    Article  Google Scholar 

  • Goyette S, Brasseur O, Beniston M (2003) Application of a new wind gust parameterisation. Multi-scale case studies performed with the Canadian RCM. J Geophys Res 108(D13):4374–4390

    Article  Google Scholar 

  • Goyette S (2008) Development of a model-based high resolution extreme surface wind climatology for Switzerland. Nat Hazards 44:329–339. doi:10.1007/s11069-007-9130-5

    Article  Google Scholar 

  • Heneka, P., and Ruck, B. (2004) Development of a storm damage risk map of Germany—a review of storm damage functions, International Conference for Disasters and Society, Karlsruhe. http://www.cedim.de. Accessed 23 Nov 2012

  • Heneka P, Hofherr T, Ruck B et al (2006) Winter storm risk of residential structures-model development and application to the German state of Baden-Wuerttemberg. Nat Hazards Earth Syst Sci 6:721–733

    Article  Google Scholar 

  • Henne S, Furger M, Prevot ASH (2005) Climatology of mountain venting-induced elevated moisture layers in the lee of the Alps. J Appl Meteor 44:620–633. doi:10.1175/jam2217.1

    Article  Google Scholar 

  • Hoinka KP (1985) Observation of the air-flow over the Alps during a Foehn event. Q J R Meteorol Soc 111:199–224. doi:10.1256/smsqj.46708

    Article  Google Scholar 

  • Holton JR (2004) An Introduction to Dynamic Meteorology, 4th edn. Academic Press, London, 535 pages

    Google Scholar 

  • Jungo P, Goyette S, Beniston M (2002) Daily wind gust speed probabilities over Switzerland and according to three types of synoptic circulation. Int J Climatol 22:485–499

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Klawa M, Ulbrich U (2003) A model for the estimation of storm losses and the identification of severe winter storms in Germany. Nat Hazards Earth Syst Sci 3:725–732

    Article  Google Scholar 

  • Lambert S, Sheng J, Boyle J (2002) Winter cyclone frequencies in thirteen models participating in the Atmospheric Model Intercomparison Project (AMIP 1). Clim Dyn 19:1–16

    Article  Google Scholar 

  • Lambert SJ, Fyfe JC (2006) Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Clim Dyn 26:713–728. doi:10.1007/s00382-006-0110-3

    Article  Google Scholar 

  • Laprise R, Caya D, Giguere M et al (1998) Climate and climate change in Western Canada as simulated by the Canadian Regional Climate Model. Atmos Ocean 36:119–167

    Article  Google Scholar 

  • Laprise R, Caya D, Frigon A et al (2003) Current and perturbed climate as simulated by the second-generation Canadian Regional Climate Model (CRCM-II) over northwestern North America. Clim Dyn 21:405–421

    Article  Google Scholar 

  • Leckebusch GC, Ulbrich U (2004) On the relationship between cyclones and extreme windstorm events over Europe under climate change. Glob Planet Chang 44:181–193. doi:10.1016/j.gloplacha.2004.06.011

    Article  Google Scholar 

  • Leckebusch G, Koffi B, Ulbrich U et al (2006) Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales. Clim Res 31:59–74

    Article  Google Scholar 

  • Masson V, Champeaux J-L, Chauvin F et al (2003) A global database of land surface parameters at 1-km resolution in meteorological and climate models. J Clim 16(9):1261–1282

    Article  Google Scholar 

  • Martynov A, Sushama L, Laprise R et al (2012) Interactive lakes in the Canadian Regional Climate Model, version 5: the role of lakes in the regional climate of North America. Tellus A 64:16226. doi:10.3402/tellusa.v64i0.16226

    Article  Google Scholar 

  • McFarlane NA, Boer GJ, Blanchet J-P et al (1992) The Canadian climate centre second generation general circulation model and its equilibrium climate. J Clim 5:1013–1044

    Article  Google Scholar 

  • Mellor GL, Yamada T (1974) Hierarchy of turbulence closure models for planetary boundary-layers. J Atmos Sc 31:1791–1806. doi:10.1175/1520-0469

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875. doi:10.1029/RG020i004p00851

    Article  Google Scholar 

  • Mitchell JFB, Wilson CA, Price C (1985) On the Specification of surface fluxes in coupled atmosphere–ocean general circulation models. Chap. 18. Elsevier Oceanogr Ser 40:249–262

    Article  Google Scholar 

  • MunichRe (2001) Winter storms in Europe (II)–Analysis of 1999 losses and loss potentials, Munich Reinsurance Company. www.munichre.com. Accessed 23 Nov 2012

  • Nielsen, N. W. and Petersen, C. (2001) Calculation of wind gusts in DMI-HIRLAM. Danish Meteorological Institute, SC. Report 01–03, Copenhagen, 32 pp. http://www.dmi.dk/dmi/sr01-03.pdf. Accessed 23 Nov 2012

  • Ólafsson H, Agustsson H (2007) The freysnes downslope windstorm. Meteorol Z 16:123–130. doi:10.1127/0941-2948/2007/0180

    Article  Google Scholar 

  • Pielke RA (2002) Mesoscale meteorological modelling. Academic Press, London, 676 pages

    Google Scholar 

  • Pinto JG, Zacharias S, Fink AH et al (2009a) Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Clim Dyn 32:711–737. doi:10.1007/s00382-008-0396-4

    Article  Google Scholar 

  • Pinto JG, Neuhaus CP, Krüger A et al (2009b) Assessment of the wind gust estimates method in mesoscale modelling of storm events over West Germany. Meteorol Z 18:495–506. doi:10.1127/0941-2948/2009/0402

    Article  Google Scholar 

  • Plummer DA, Caya D, Frigon A et al (2006) Climate and climate change over North America as simulated by the Canadian RCM. J Clim 19:3112–3132. doi:10.1175/JCLI3769.1

    Article  Google Scholar 

  • Pfister C (1999) Wetternachhersage, 500 Jahre Klimavariationen und Naturkatastrophen. Paul Haupt Verlag, Bern, Stuttgart, Wien, p 304

    Google Scholar 

  • Raible CC, Della-Marta PM, Schwierz C et al (2008) Northern hemisphere extra-tropical cyclones: a comparison of detection and tracking methods and different reanalyses. Mon Weather Rev 136:880–897. doi:10.1175/2007mwr2143.1

    Article  Google Scholar 

  • Schiesser HH, Pfister C, Bader J (1997) Winter storms in Switzerland North of the Alps 1864/1865-1993/1994. Theor Appl Climatol 58:1–19

    Article  Google Scholar 

  • Schmith T, Kaas E, Li T-S (1998) Northeast Atlantic winter storminess 1875–1995 re-analysed. Clim Dyn 14:529–536

    Article  Google Scholar 

  • Schraft, A., Durand, E., and Hausmann, P. (1993) Storms over Europe: losses and scenarios, Swiss Reinsurance Company, 28 pp. www.swissre.com. Accessed 23 Nov 2012

  • Schüepp M (1978) Klimatologie der Schweiz. Band III. In Beiheft zu den Annalen der Schweizerischen Meteorologischen Anstalt, Zurich, p 89

    Google Scholar 

  • Schüepp M, Schiesser HH, Huntrieser H et al (1994) The windstorm “Vivian” of 27 February 1990: about the meteorological development, wind forces and damage situation in the forest of Switzerland. Theor Appl Climatol 49:183–200

    Article  Google Scholar 

  • Schulz, J.-P. (2008) Revision of the turbulent gust diagnostics in the COSMO model. COSMO Newslett. 8: 17–22. www.cosmo-model.org. Accessed 23 Nov 2012

  • Schwierz C, Kollner-Heck P, Mutter EZ et al (2010) Modelling European winter wind storm losses in current and future climate. Clim Change 101:485–514. doi:10.1007/s10584-009-9712-1

    Article  Google Scholar 

  • Stephenson DB, Wanner H, Broennimann S et al (2002) The history of scientific research on the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact, Geophysical Monograph 134. American Geophysical Union, Washington, pp 37–50

    Google Scholar 

  • von Storch H, Weisse R (2008) Regional storm climate and related marine hazards in the Northeast Atlantic. In: Diaz HF, Murnane RJ (eds) Climate extremes and society. Cambridge University Press, Cambridge, p 340

    Google Scholar 

  • Thorarinsdottir TL, Johnson MS (2012) Probabilistic wind gust forecasting using non-homogeneous Gaussian regression. Mon Wea Rev 140:889–897. doi:10.1175/MWR-D-11-00075.1

    Article  Google Scholar 

  • Tveito, O. E., Wegehenke, M., van der Wel, F., and Dobesch, H. (2008) The use of geographic information systems in climatology and meteorology, Office for Official Publications of the European Communities, 245 pp

  • Ulbrich U, Leckebusch GC, Pinto JG (2009) Cyclones in the present and future climate: a review. Theor Appl Climatol 96:117–131. doi:10.1007/s00704-008-0083-8

    Article  Google Scholar 

  • Usbeck T, Wohlgemuth T, Dobbertin M et al (2010) Increasing storm damage to forests in Switzerland from 1858 to 2007. Agric For Meteorol 150:47–55. doi:10.1016/j.agrformet.2009.08.010

    Article  Google Scholar 

  • Wanner H, Furger M (1990) The Bise—climatology of a regional wind north of the Alps. Meteorol Atmos Phys 43:105–115. doi:10.1007/bf01028113

    Article  Google Scholar 

  • Wang XL, Zwiers FW, Swail VR et al (2009) Trends and variability of storminess in the Northeast Atlantic Region, 1874–2007. Clim Dyn 33:1179–1195. doi:10.1007/s00382-008-0504-5

    Article  Google Scholar 

  • WASA Group (1998) Changing waves and storms in the Northeast Atlantic. Bull Am Met Soc 79:741–760

    Article  Google Scholar 

  • Wieringa J (1973) Gust factors over open water and built up country. Bound Layer Meteor 3:424–441

    Article  Google Scholar 

  • Wilson MF, Henderson-Sellers A (1985) A global archive of land cover and soils data for use in general circulation climate models. J Climatol 5:119–143

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Cantons of Geneva, Vaud, Fribourg, Bern and Neuchatel for providing the data of the lake surface temperatures. They are also grateful to the CIPEL and to Dr. Markus Zeh from the Amt für Wasser und Abfall (AWA) for the help they provided to gather the lake temperature data. Authors are also very grateful to Dr. Denis Cohen for his support in reading, checking and commenting the document prior to its submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Etienne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etienne, C., Goyette, S. & Kuszli, CA. Numerical investigations of extreme winds over Switzerland during 1990–2010 winter storms with the Canadian Regional Climate Model. Theor Appl Climatol 113, 529–547 (2013). https://doi.org/10.1007/s00704-012-0800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0800-1

Keywords

Navigation