Skip to main content

Advertisement

Log in

Evaluating a modified point-based method to downscale cell-based climate variable data to high-resolution grids

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

To address the demand for high spatial resolution gridded climate data, we have advanced the Daymet point-based interpolation algorithm for downscaling global, coarsely gridded data with additional output variables. The updated algorithm, High-Resolution Climate Downscaler (HRCD), performs very good downscaling of daily, global, historical reanalysis data from 1° input resolution to 2.5 arcmin output resolution for day length, downward longwave radiation, pressure, maximum and minimum temperature, and vapor pressure deficit. It gives good results for monthly and yearly cumulative precipitation and fair results for wind speed distributions and modeled downward shortwave radiation. Over complex terrain, 2.5 arcmin resolution is likely too low and aggregating it up to 15 arcmin preserves accuracy. HRCD performs comparably to existing daily and monthly US datasets but with a global extent for nine daily climate variables spanning 1948–2006. Furthermore, HRCD can readily be applied to other gridded climate datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

DAY:

Day length

LWRAD:

Downward long wave radiation

PRCP:

Precipitation

PRES:

Surface pressure

RH:

Relative humidity

SH:

Specific humidity

SWRAD:

Downward shortwave radiation

T AVG :

Average air temperature

T DAY :

Average daytime temperature

T DEW :

Dew point temperature

T MAX :

Maximum temperature

T MIN :

Minimum temperature

VPD:

Vapor pressure deficit

WND:

Wind speed

HRCD:

High-Resolution Climate Downscaler

References

  • Anandhi A, Srinivas VV, Nanjundiah RS, Kumar DN (2008) Downscaling precipitation to river basin in India for IPCCSRES scenarios using support vector machine. Int J Climatol 28(3):401–420

    Article  Google Scholar 

  • Aronoff S (2005) Remote sensing for GIS managers. ESRI, Redlands

    Google Scholar 

  • Bayliss JL, Simonite V, Thompson S (2005) The use of probabilistic habitat suitability models for biodiversity action planning. Agric Ecosyst Environ 108(3):228–250

    Article  Google Scholar 

  • Boé J, Terray L, Habets F, Martin E (2007) Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int J Climatol 27(12):1643–1655

    Article  Google Scholar 

  • Cabeza M, Arponen A, Jäättelä L, Kujala H, Av T, Hanski I (2010) Conservation planning with insects at three different spatial scales. Ecography 33(1):54–63

    Article  Google Scholar 

  • Campbell GS, Norman JM (1998) An introduction to environmental biophysics, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Charles SP, Bates BC, Whetton PH, Hughes JP (1999) Validation of downscaling models for changed climate conditions: case study of Southwestern Australia. Clim Res 12(1):1–14

    Article  Google Scholar 

  • Cheng CS, Li G, Li Q, Auld H (2008) Statistical downscaling of hourly and daily climate scenarios for various meteorological variables in South-Central Canada. Theor Appl Climatol 91(1–4):129–147

    Article  Google Scholar 

  • Daly C, Neilson RP, Phillips DL (1994) A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33(2):140–158

    Article  Google Scholar 

  • Daly C, Gibson WP, Taylor GH, Johnson GL, Pasteris P (2002) A knowledge-based approach to the statistical mapping of climate. Clim Res 22(2):99–113

    Article  Google Scholar 

  • Daymet (2009) Daily surface weather data and climatological summaries. http://www.daymet.org. Accessed 2009

  • Di Vittorio AV, Anderson RS, White JD, Miller NL, Running SW (2010) Development and optimization of an Agro-BGC ecosystem model for C4 perennial grasses. Ecol Model 221(17):2038–2053

    Article  Google Scholar 

  • Galatowitsch S, Frelich L, Phillips-Mao L (2009) Regional climate change adaptation strategies for biodiversity conservation in a midcontinental region of North America. Biol Conserv 142(10):2012–2022

    Article  Google Scholar 

  • Giorgi F, Shields Brodeur C, Bates GT (1994) Regional climate change scenarios over the United States produced with a nested regional climate model. J Clim 7(3):375–399

    Article  Google Scholar 

  • Girvetz EH, Thorne JH, Berry AM, Jaeger JAG (2008) Integration of landscape fragmentation analysis into regional planning: a statewide multi-scale case study from California, USA. Landsc Urban Plan 86(3–4):205–218

    Article  Google Scholar 

  • González-Hidalgo JC, Luis MD, Raventós J, Sánchez JR (2001) Spatial distribution of seasonal rainfall trends in a western Mediterranean area. Int J Climatol 21(7):843–860

    Article  Google Scholar 

  • Ha K-J, Shin S-H, Mahrt L (2009) Spatial variation of the regional wind field with land–sea contrasts and complex topography. J Appl Meteorol Climatol 48(9):1929–1939

    Article  Google Scholar 

  • Hastings DA, Dunbar PK (1999) Global land one-kilometer base elevation (GLOBE) digital elevation model, documentation, volume 1.0. vol Key to Geophysical Records Documentation (KGRD) 34. National Oceanic and Atmospheric Administration National Geophysical Data Center, Boulder

    Google Scholar 

  • Hewitson BC, Crane RG (1996) Climate downscaling: techniques and application. Clim Res 07(2):85–95

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

    Article  Google Scholar 

  • Holton JR (1992) An introduction to dynamic meteorology, 3rd edn. Academic, San Diego

    Google Scholar 

  • Iribane JV, Godson WL (1981) Atmospheric thermodynamics, 2nd edn. D. Reidel, Dordrecht

    Book  Google Scholar 

  • Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Jarvis A, Reuter HI, Nelson A et al (2008) Hole-filled SRTM for the globe Version 4, CGIAR CSI SRTM 90m Database. International Center for Tropical Agriculture, Cali, Columbia. http://srtm.csi.cgiar.org

  • Jensen JR (2005) Introductory digital image processing: a remote sensing perspective. Prentice-Hall series in geographic information science, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Kimball JS, Running SW, Nemani R (1997) An improved method for estimating surface humidity from daily minimum temperature. Agric For Meteorol 85(1–2):87–98

    Article  Google Scholar 

  • Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N, Norman JM, Gower ST (2000) Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Global Biogeochem Cycles 14(3):795–825

    Article  Google Scholar 

  • Landman WA, Tennant WJ (2000) Statistical downscaling of monthly forecasts. Int J Climatol 20(13):1521–1532

    Article  Google Scholar 

  • Lo JCF, Yang ZL, Pielke RA (2008) Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J Geophys Res-Atmos 113(D09112)

  • Ma S, Baldocchi DD, Xu L, Hehn T (2007) Inter-annual variabilty in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric For Meteorol 147:157–171

    Google Scholar 

  • Maurer EP, Wood AW, Adam JC, Lettenmaier DP, Nijssen B (2002) A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J Clim 15(22):3237–3251

    Article  Google Scholar 

  • Maurer EP, Hidalgo HG, Das T, Dettinger MD, Cayan DR (2010) The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol Earth Syst Sci 14(6):1125–1138

    Article  Google Scholar 

  • Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki W, Da J, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W (2006) North American regional reanalysis. Bull Am Meteorol Soc 87(3):343–360

    Article  Google Scholar 

  • Miguez FE, Zhu X, Humphries S, Bolero GA, Long SP (2009) A semimechanistic model predicting the growth and production of the bioenergy crop Miscanthus giganteus: description, parameterization and validation. GCB Bioenergy 1(4):282–296

    Article  Google Scholar 

  • Miller NL, Cayan D, Duffy P, Hidalgo H, Jin J, Kanamaru H, Kanamitsu M, O’Brien T, Schlegel N, Sloan L, Snyder M, Yoshimura K (2009) An analysis of simulated CA climate using multiple dynamical and statistical techniques. The California Climate Change Center Report Series. CEC-500-2009-017-F

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712

    Article  Google Scholar 

  • Mock CJ (1996) Climatic controls and spatial variations of precipitation in the Western United States. J Clim 9(5):1111–1125

    Article  Google Scholar 

  • Paul S, Liu CM, Chen JM, Lin SH (2008) Development of a statistical downscaling model for projecting monthly rainfall over East Asia from a general circulation model output. J Geophys Res-Atmos 113(D15)

  • PRISM Climate Group (2010) Oregon State University, Created 4 Feb 2004, http://www.prismclimate.org. Accessed 2010

  • Richards JA (1993) Remote sensing digital image analysis: an introduction. Springer, Berlin

    Book  Google Scholar 

  • Riley WJ, Biraud SC, Torn MS, Fischer ML, Billesbach DP, Berry JA (2009) Regional CO2 and latent heat surface fluxes in the southern great pains: measurements, modeling, and scaling. J Geophys Res 114(G04009):1–15

    Google Scholar 

  • Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol Model 42(2):125–154

    Article  Google Scholar 

  • Running SW, Nemani RR, Hungerford RD (1987) Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Can J For Res 17(6):472–483

    Article  Google Scholar 

  • Salathe EP, Mote PW, Wiley MW (2007) Review of scenario selection and downscaling methods for the assessment of climate change impacts on hydrology in the United States Pacific Northwest. Int J Climatol 27(12):1611–1621

    Article  Google Scholar 

  • Schubert S (1998) Downscaling local extreme temperature changes in South-Eastern Australia from the CSIRO Mark2 GCM. Int J Climatol 18(13):1419–1438

    Article  Google Scholar 

  • Sheffield J, Goteti G, Wood EF (2006) Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J Clim 19(13):3088–3111

    Article  Google Scholar 

  • Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 23rd Association for Computing Machinery (ACM) National Conference. ACM, New York, NY, USA. doi:10.1145/800186.810616

  • Spak S, Holloway T, Lynn B, Goldberg R (2007) A comparison of statistical and dynamical downscaling for surface temperature in North America. J Geophys Res-Atmos 112(D8)

  • Steinacker R, Ratheiser M, Bica B, Chimani B, Dorninger M, Gepp W, Lotteraner C, Schneider S, Tschannett S (2006) A mesoscale data analysis and downscaling method over complex terrain. Mon Weather Rev 134(10):2758–2771

    Article  Google Scholar 

  • Sylla MB, Gaye AT, Pal JS, Jenkins GS, Bi XQ (2009) High-resolution simulations of West African climate using regional climate model (RegCM3) with different lateral boundary conditions. Theor Appl Climatol 98(3–4):293–314

    Article  Google Scholar 

  • Tao K, Barros AP (2010) Using fractal downscaling of satellite precipitation products for hydrometeorological applications. J Atmos Ocean Technol 27(3):409–427

    Article  Google Scholar 

  • Thornton PE, Rosenbloom NA (2005) Ecosystem model spin-up: estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol Model 189(1–2):25–48

    Article  Google Scholar 

  • Thornton PE, Running SW, White MA (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol 190(3–4):214–251

    Article  Google Scholar 

  • Thornton PE, Hasenauer H, White MA (2000) Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: an application over complex terrain in Austria. Agric For Meteorol 104(4):255–271

    Article  Google Scholar 

  • Trigo RM, Palutikof JP (2001) Precipitation scenarios over Iberia: a comparison between direct GCM output and different downscaling techniques. J Clim 14(23):4422–4446

    Article  Google Scholar 

  • Tustison B, Harris D, Foufoula-Georgiou E (2001) Scale issues in verification of precipitation forecasts. J Geophys Res 106(D11):1775–11784

    Article  Google Scholar 

  • Wilby RL, Wigley TML (1997) Downscaling general circulation model output: a review of methods and limitations. Prog Phys Geogr 21(4):530–548

    Article  Google Scholar 

  • Wilby RL, Wigley TML, Conway D, Jones PD, Hewitson BC, Main J, Wilks DS (1998) Statistical downscaling of general circulation model output: a comparison of methods. Water Resour Res 34(11):2995–3008

    Article  Google Scholar 

  • Winstral A, Marks D, Gurney R (2009) An efficient method for distributing wind speeds over heterogeneous terrain. Hydrol Process 23(17):2526–2535

    Article  Google Scholar 

  • Zhang XC (2005) Spatial downscaling of global climate model output for site-speciftc assessment of crop production and soil erosion. Agric For Meteorol 135(1–4):215–229

    Article  Google Scholar 

  • Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95(2):164–176

    Article  Google Scholar 

Download references

Acknowledgments

The Energy Biosciences Institute funded this research under grant EBI07-J120. The ISLSCP Initiative II elevation data are courtesy of Kristen Verdin, the United States Geological Survey, and the Eros data center. Work performed at Lawrence Berkeley National Laboratory, including manuscript revision, was supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan V. Di Vittorio.

Appendices

Appendix A. Modified cosine interpolation

Modified cosine interpolation is more consistent with cell-based data than other interpolation methods because it more heavily weights the nearest input point with respect to the quadrant containing the output point rather than calculating a weight based on a linear distance from the input point. HRCD uses a fourth-power cosine function to constrain input values to the four nearest-neighbor cells and to mitigate input cell boundary effects on the interpolated surface (Zhao et al. 2005):

$$ {{D_i} = {\text{co}}{{\text{s}}^4}\left[ {\left( {\frac{\pi }{{2}}} \right) \cdot \left( {\frac{{{d_i}}}{{{d_{i{ \max }}}}}} \right)} \right]\quad i = {1,2,3,4}} $$
(A1)
$$ {{W_i} = \frac{{{D_i}}}{{\sum\nolimits_{i = {1}}^4 {{D_i}} }}} $$
(A2)
$$ {V = \sum\nolimits_{i = {1}}^4 {\left( {{W_i} \cdot {V_i}} \right)} }, $$
(A3)

where i is the index of one of four nearest-neighbor input cell centers, D i is the nonlinear distance between the output cell center and input cell center i (dimensionless), d i is the great circle distance between the output cell center and input cell center i (meter), d imax is the great circle distance-passing through the output cell center—from input cell center i to the latitude–longitude boundary defined by the four nearest-neighbor input cell centers (meter), W i is the interpolation weight for input cell center i (dimensionless), V i is the climate variable value at input the cell center i, and V is the interpolated climate variable value at the output cell center (Fig. 12).

Fig. 12
figure 12

Modified cosine interpolation. In this study the output interpolation point is the center of the output cell. di is the great circle distance between input cell center i (14) and the output interpolation point. d imax is the great circle distance between input cell center i and the latitude/longitude boundary defined by the four input cell centers, passing through the interpolation point

This d imax constrains weights by the latitude-longitude boundary defined by the four nearest-neighbor input cell centers. Zhao et al. (2005) defines d imax as the maximum great circle distance between any two of the four input cell centers. Thus, D i  = W i  = 0 only when the output cell center lies on the great circle associated with d imax. In all other cases, with distortion increasing with latitude due to meridian convergence, inappropriately high weights can occur because d imax extends beyond the latitude–longitude boundary defined by the four nearest-neighbor input cell centers. Our d imax, however, ensures that D i is based on the relative position of the interpolation point within the four input cell centers.

Appendix B. Humidity variable conversion

For the daily input data described in Section 2.2, T DEW (degree Celcius) is calculated from pressure and specific humidity via average vapor pressure using the inverse of the Magnus–Tetens formula (Campbell and Norman 1998):

$$ {e = {610}{.70} \cdot { \exp }\left( {\frac{{{17}{.38} \cdot {T_{\text{DEW}}}}}{{{T_{\text{DEW}}} + {239}{.0}}}} \right)} $$
(B1)

and

$$ {e = \frac{{{\text{PRES}} \cdot {\text{SH}}}}{{\left( {\frac{{{M_{\text{wv}}}}}{{{M_{\text{da}}}}} \cdot \left( {{1} - {\text{SH}}} \right)} \right) \cdot \left( {{1} + \frac{\text{SH}}{{\frac{{{M_{\text{wv}}}}}{{{M_{\text{da}}}}} \cdot \left( {{1} - {\text{SH}}} \right)}}} \right)}}}, $$
(B2)

where e is the average vapor pressure (Pascal), PRES is the input average surface pressure (Pascal), SH is the average specific humidity (kilograms water vapor (kilograms per dry air + water vapor)), M wv is the molecular mass of water vapor (18.0148 × 10−3 kg mol−1), and M da is the molecular mass of dry air (28.9644 × 10−3 kg mol−1).

After interpolation, T DEW is converted back to e using Eq. 2 and then converted to VPD by (Pascal):

$$ {{\text{VPD}} = {e_s} - e} $$
(B3)

and

$$ {T_{\text{DAY}}} = {0}{.725} \cdot \,{T_{{\text{MAX}}\,}} + {0}{.275} \cdot \,{T_{\text{MIN}}}\,, $$
(B4)

where e s is the average saturation vapor pressure (Pascal) calculated by Eq. (2) with T DAY (degree Celcius) in place of T DEW, and T MAX and T MIN are maximum and minimum daily temperatures, respectively (degree Celcius). We also used Eqs. (B1), (B3), and (B4) to convert verification data (Section 2.3) to VPD.

When T AVG and PRES input data are available, elevation-adjusted PRES is estimated by the hypsometric equation (Holton 1992):

$$ {{Z_2} - {Z_1} = \frac{{RT}}{g} \cdot { \ln }\left[ {\frac{{{P_1}}}{{{P_2}}}} \right]} $$
(B5)

The elevation-adjusted PRES is used with Eqs. (B1)–(B4) to calculate an output SH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Vittorio, A.V., Miller, N.L. Evaluating a modified point-based method to downscale cell-based climate variable data to high-resolution grids. Theor Appl Climatol 112, 495–519 (2013). https://doi.org/10.1007/s00704-012-0740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0740-9

Keywords

Navigation