Skip to main content

Advertisement

Log in

Status of NCEP CFS vis-a-vis IPCC AR4 models for the simulation of Indian summer monsoon

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

National Centers for Environmental Prediction (NCEP) Coupled Forecast System (CFS) is selected to play a lead role for monsoon research (seasonal prediction, extended range prediction, climate prediction, etc.) in the ambitious Monsoon Mission project of Government of India. Thus, as a prerequisite, a detail analysis for the performance of NCEP CFS vis-a-vis IPCC AR4 models for the simulation of Indian summer monsoon (ISM) is attempted. It is found that the mean monsoon simulations by CFS in its long run are at par with the IPCC models. The spatial distribution of rainfall in the realm of Indian subcontinent augurs the better results for CFS as compared with the IPCC models. The major drawback of CFS is the bifurcation of rain types; it shows almost 80–90 % rain as convective, contrary to the observation where it is only 50–65 %; however, the same lacuna creeps in other models of IPCC as well. The only respite is that it realistically simulates the proper ratio of convective and stratiform rain over central and southern part of India. In case of local air–sea interaction, it outperforms other models. However, for monsoon teleconnections, it competes with the better models of the IPCC. This study gives us the confidence that CFS can be very well utilized for monsoon studies and can be safely used for the future development for reliable prediction system of ISM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Achuta Rao K, Covey C, Doutriax C, Fiorino M, Gleckler P, Phillips T, Sperber K, Taylor K (2004) An appraisal of coupled climate model simulations. In: Bader D (ed) UCRL-TR−202550. Lawrence National Laboratory, USA, p 183

  • Achuthavarier D, Krishnamurthy V (2010) Relation between intraseasonal and interannual variability of South Asian monsoon in the NCEP forecast systems. J Geophys Res 115:D08104. doi:10.1029/2009JD012865

    Article  Google Scholar 

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind A, Arkin P, Nelkin E (2003) The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Annamalai H, Hamilton H, Sperber KR (2007) The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20:1071–1092

    Article  Google Scholar 

  • Bamzai AS, Shukla J (1999) Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: an observational study. J Clim 12:3117–3132

    Article  Google Scholar 

  • Barsugli JJ, Battisti DS (1998) The basics effects of atmosphere–ocean thermal coupling on midlatitude variability. J Atmos Sci 55:477–493

    Article  Google Scholar 

  • Bollasina M, Nigam S (2009) Indian Ocean SST, evaporation and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations. Clim Dyn 33:1017–1032. doi:10.1007/s00382-008-0477-4

    Article  Google Scholar 

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630

    Article  Google Scholar 

  • Fennessy MJ, Kinter JL III, Kirtman B, Marx L, Nigam S, Schneider E, Shukla J, Straus D, Vernekar A, Xue Y, Zhou J (1994) The simulated Indian monsoon: a GCM sensitivity study. J Clim 7:33–43

    Article  Google Scholar 

  • Flato GM, Boer GJ, Lee WG, McFarlane NA, Ramsden D, Reader MC, Weaver AJ (2000) The Canadian centre for climate modeling and analysis of global coupled model and its climate. Clim Dyn 16:451–467

    Article  Google Scholar 

  • Furevik T, Bentsen M, Drange H, Kindem IKT, Kvamsto NG, Sorteberg A (2003) Description and evaluation of the Bergen Climate Model: ARPEGE coupled with MICOM. Clim Dyn 21:27–51

    Article  Google Scholar 

  • Gadgil S, Sajani S (1998) Monsoon precipitation in the AMIP runs. Clim Dyn 14:659–689

    Article  Google Scholar 

  • Gadgil S, Vinayachandran PN, Francis PA, Gadgil S (2004) Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys Res Lett 31:L12213. doi:10.1029/2004GL019733

    Article  Google Scholar 

  • Gadgil S, Rajeevan M, Nanjundiah R (2005) Monsoon prediction—why yet another failure? Curr Sci 88:1389–1400

    Google Scholar 

  • Gadgil S, Rajeevan M, Francis PA (2007) Monsoon variability: links to major oscillations over the equatorial Pacific and Indian oceans. Curr Sci 93:182–194

    Google Scholar 

  • Gates WL, Boyle J, Covey C, Dease C, Doutriaux C, Drach R, Fiorino M, Gleckler P, Hnilo J, Marlais S, Phillips T, Potter G, Santer BD, Sperber KR, Taylor K, Williams D (1999) An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull Am Meteor Soc 80:29–55

    Article  Google Scholar 

  • Hewitt CD (2004) Ensembles-based predictions of climate changes and their impacts, Eos Trans. AGU 85(52):566. doi:10.1029/2004EO520005

    Google Scholar 

  • Hong SY, Pan HL (1998) Convective trigger function for a mass-flux cumulus parameterization scheme. Mon Wea Rev 126:2599–2620

    Article  Google Scholar 

  • Hou YT, Campana KA, Yang SK (1996) Shortwave radiation calculations in the NCEP’s global model, IRS’96. Current problems of atmospheric radiation. Proceedings of the International Radiation Symposium, W. L. Smith and K. Stamnes (eds), Deepak: 317–319

  • Houze RA Jr (1982) Cloud clusters and large-scale vertical motions in the tropics. J Meteor Soc Japan 60:396–410

    Google Scholar 

  • Houze RA Jr (1989) Observed structure of mesoscale convective systems and implications for large-scale heating. Quart J Roy Meteor Soc 115:425–461

    Article  Google Scholar 

  • Iguchi T, Kozu T, Meneghine R, Awaka J, Okamoto K (2000) Rain-profiling algorithm for the TRMM precipitation radar. J Appl Meteor 39:2038–2052

    Article  Google Scholar 

  • Jones C, Gregory J, Thorpe R, Cox P, Murphy J, Sexton D, Valdes H (2004) Systematic optimization and climate simulation of FAMOUS, a fast version of HADCM3. Hadley Centre Technical Note 60, 33 pp (Available at http://www.metoffice.gov.uk/research/hadleycentre/pubs/HCTN/HCTN_60.pdf)

  • Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5 MPI-OM. J Clim 19:3952–3972

    Article  Google Scholar 

  • K-1 Model Developers (2004) K-1 Coupled GCM (MIROC) description. In: Hasumi H, Emori S (eds) K-1 tech report no. 1, Center for Climate System Research, University of Tokyo, National Institute for Environmental Studies, Frontier Research Center for Global Change, 39 pp (Available at http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf)

  • Kang IS, Shukla J (2006) Dynamic seasonal prediction and predictability of the monsoon. The Asian monsoon. Berlin, Heidelberg, Springer Praxis Books, 2006, Part 4: 585–612, doi:10.1007/3-540-37722-0_15

  • Kim YJ, Arakawa A (1995) Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J Atmos Sci 52:1875–1902

    Article  Google Scholar 

  • Kripalani RH, Kulkarni AA (1996) Assessing the impacts of El Nino and non-El Nino related droughts over India. Dorught Netw News 8:11–13

    Google Scholar 

  • Kripalani RH, Kulkarni AA (1999) Climatology and variability of historical Soviet snow depth data: some new perspectives in snow–Indian monsoon teleconnections. Clim Dyn 15:475–489

    Article  Google Scholar 

  • Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theo Appl Climatol 90:133–159

    Article  Google Scholar 

  • Krishnamurthy V, Shukla J (2001) Observed and model simulated interannual variability of the Indian monsoon. Mausam 52:133–150

    Google Scholar 

  • Meehl GA, Boer GJ, Covey C, Latif M, Stouffer RJ (2000) The coupled model intercomparison project (CMIP). Bull Amer Meteor Soc 81:313–318

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel data set: a new era in climate change research. Bull Amer Meteor Soc 88:1383–1394

    Article  Google Scholar 

  • Moorthi S, Pan HL, Caplan P (2001) Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NWS technical procedures bulletin 484 pp. Available at www.nws.noaa.gov

  • Nanjundiah RS (2009) A quick look into assessment of forecasts for the Indian summer monsoon rainfall in 2009. CAOS Report, CAOS, IISc, Bangalore, October-2009

  • Nigam S (1994) On the dynamical basis for the Asian summer monsoon rainfall–El Niño relationship. J Climate 7:1750–1771

    Article  Google Scholar 

  • Pacanowski RC, Griffies SM (1998) MOM 3.0 manual, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton. Available at www.gfdl.noaa.gov

  • Preethi B, Kripalani RH, KrishnaKumar K (2010) Indian summer monsoon variability in global coupled ocean–atmosphere models. Clim Dyn 35:1521–1539

    Article  Google Scholar 

  • Rajeevan M, Nanjundiah RS (2009) Coupled model simulations of twentieth century climate of the Indian summer monsoon. Current Trends in Science, Platinum jubilee special. Curr Sci 537–567

  • Rajeevan M, Pai DS, Thapliyal V (1998) Spatial and temporal relationships between global and surface air temperature anomalies and Indian summer monsoon. Meteorol Atmos Phys 66:157–171

    Article  Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analysis using optimum interpolation. J Climate 7:929–948

    Article  Google Scholar 

  • Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van Den Dool HM, Pan HL, Moorthi S, Behringer D, Stokes D, Pena M, Lord S, White G, Ebisuzaki W, Peng P, Xie P (2006) The NCEP climate forecast system. J Climate 19:3483–3517

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Salas-Melia D, Chauvin F, Deque M, Douville H, Gueremy JF, Marquet P, Planton S, Royer JF, Tyteca S (2005) Description and validation of the CNRM-CM3 global coupled model. CNRM Working Note 103, p 36

  • Schumacher C, Houze RA Jr, Kraucunas I (2004) The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J Atmos Sci 61:1341–1358

    Article  Google Scholar 

  • Shukla J (1984) Predictability of time averages: part II. The influence of the boundary forcing. Problems and prospects in long and medium range weather forecasting. In: Burridge DM, Kallen E (eds) Berlin, Springer-Verlag 155–206

  • Sikka DR (1980) Some aspects of the large-scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in the planetary and regional scale circulation parameters. Proc Ind Acad Sci (Earth Planet Sci) 89:179–195

    Google Scholar 

  • Slingo JM, Annamalai H (2000) 1997: the El Niño of the century and the response of the Indian summer monsoon. Mon Wea Rev 128:1778–1797

    Article  Google Scholar 

  • Sun Y, Solomon S, Dai A, Portmann RW (2006) How often does it rain? J Clim 19:916–934

    Article  Google Scholar 

  • Tao WK, Lang S, Simpson J, Adler R (1993) Retrieval algorithms for estimating the vertical profiles of latent heat release: their applications for TRMM. J Meteor Soc Japan 71:685–700

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  • von Storch JS (2000) Signature of air-sea interactions in a coupled atmosphere–ocean GCM. J Climate 13:3361–3379

    Article  Google Scholar 

  • Walker GT, Bliss EW (1932) World weather. Mem R Meteorol Soc 4:53–84

    Google Scholar 

  • Wang B, Ding X, Fu IS, Kang KJ, Shukla J, Doblas RF (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711

    Article  Google Scholar 

  • Zhao QY, Carr FH (1997) A prognostic cloud scheme for operational NWP models. Mon Wea Rev 125:1931–1953

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from B. N. Goswami, Director IITM, and Dr. Surya Chandra Rao, Program Manager “Development of a System for Seasonal Prediction of Monsoon,” IITM, for pursuing the research. Ferret and NCL Freeware are used extensively in plotting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Pokhrel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokhrel, S., Dhakate, A., Chaudhari, H.S. et al. Status of NCEP CFS vis-a-vis IPCC AR4 models for the simulation of Indian summer monsoon. Theor Appl Climatol 111, 65–78 (2013). https://doi.org/10.1007/s00704-012-0652-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0652-8

Keywords

Navigation