Skip to main content

Advertisement

Log in

Long-term variations of atmospheric angular momentum and torque

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

In the absence of external torques, the earth system is a closed system and its angular momentum is conserved. The atmospheric angular momentum (AAM) exchange with the solid/liquid earth is achieved by friction and mountain torques. The variations of the AAM and torques are important indicators of global climate change. Using the NCEP/NCAR reanalysis data for 1948–2015, the long-term variations of the AAM and torques are analyzed. A weak positive AAM trend is detected, but an examination of the AAM budget shows that on annual to decadal scales, the signals of the AAM and total torque are inconsistent. During the study period, the total torque was mostly negative and had a decreasing trend, suggesting a decrease of the AAM. To check this inconsistency, we analyze the time series of the length-of-day anomalies, ΔLOD. It is found that ΔLOD is weakly correlated with the AAM, while the derivative of the earth’s core-induced ΔLOD is strongly correlated with the torque. If this is correct, then a core-induced climate change can indeed happen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Archer CL, Caldeira K (2008) Historical trends in the jet streams. Geophys Res Lett 35:L08803. https://doi.org/10.1029/2008GL033614

    Article  Google Scholar 

  • Barnes RTH, Hide R, White AA, Wilson CA (1983) Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc R Soc Lond A 387:31–73. https://doi.org/10.1098/rspa.1983.0050

    Article  Google Scholar 

  • Brázdil R, Chromá K, Dobrovolný P, Tolasz R (2009) Climate fluctuations in the Czech Republic during the period 1961–2005. Int J Climatol 29:223–242

    Article  Google Scholar 

  • Chao BF (1989) Length-of-day variations caused by El Niňo/Southern Oscillation and the Quasi-Biennial Oscillation. Science 243:923–925

    Article  Google Scholar 

  • de Viron O (2004) Low-frequency excitation of length of day and polar motion by the atmosphere. J Geophys Res. https://doi.org/10.1029/2003jb002817

    Article  Google Scholar 

  • de Viron O, Marcus SL, Dickey JO (2001) Atmospheric torques during the winter of 1989: impact of ENSO and NAO positive phases. Geophys Res Lett 28:1985–1988. https://doi.org/10.1029/2000gl012675

    Article  Google Scholar 

  • Dee D et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • del Rio RA (1999) The influence of global warming in Earth rotation speed. Ann Geophys 6:806–811

    Google Scholar 

  • Egger J, Hoinka K-P (2002) Covariance analysis of the global atmospheric axial angular momentum budget. Mon Weather Rev 130:1063–1070

    Article  Google Scholar 

  • Egger J, Weickmann K (2007) Latitude-height structure of the atmospheric angular momentum cycle associated with the Madden–Julian oscillation. Mon Weather Rev 135:1564–1575. https://doi.org/10.1175/MWR3363.1

    Article  Google Scholar 

  • Egger J, Hoinka K-P, Weickmann K, Huang H-P (2003) Angular momentum budgets based on NCEP and ECMWF reanalysis data: an intercomparison. Mon Weather Rev 131:2577–2585

    Article  Google Scholar 

  • Egger J, Weickmann K, Hoinka K-P (2007) Angular momentum in the global atmospheric circulation. Rev Geophys. https://doi.org/10.1029/2006rg000213

    Article  Google Scholar 

  • Fu Q, Johanson CM, Wallace JM, Reichler T (2006) Enhanced mid-latitude tropospheric warming in satellite measurements. Science 312:1179

    Article  Google Scholar 

  • Gross RS (2003) Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000. J Geophys Res. https://doi.org/10.1029/2002jb002143

    Article  Google Scholar 

  • Gross RS (2005) Atmospheric and oceanic excitation of decadal-scale Earth orientation variations. J Geophys Res. https://doi.org/10.1029/2004jb003565

    Article  Google Scholar 

  • Gross RS (2007) Earth rotation variations—long period. In: Treatise on Geophysics, Elsevier, pp 239–294

  • Gross RS (2015) Earth rotation variations—long period. In: Treatise on Geophysics (Second Edition). Elsevier, Oxford, pp 215–261. doi:http://dx.doi.org/10.1016/B978-0-444-53802-4.00059-2

    Chapter  Google Scholar 

  • Gross RS, Marcus SL, Eubanks TM, Dickey JO, Keppenne CL (1996) Detection of an ENSO signal in seasonal length-of-day variations. Geophys Res Lett 23:3373–3376

    Article  Google Scholar 

  • Hide R, Dickey JO (1991) Earth's variable rotation. Science 253(5020):629–637

    Article  Google Scholar 

  • Huang HP, Sardeshmukh PD, Weickmann KM (1999) The balance of global angular momentum in a long-term atmospheric data set. J Geophys Res 104:2031–2040

    Article  Google Scholar 

  • Huang H-P, Weickmann KM, Hsu CJ (2001) Trend in atmospheric angular momentum in a transient climate change simulation with greenhouse gas and aerosol forcing. J Clim 14:1525–1534. https://doi.org/10.1175/1520-0442(2001)014%3c1525:TIAAMI%3e2.0.CO;2

    Article  Google Scholar 

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, https://doi.org/10.1017/cbo9781107415324

    Google Scholar 

  • Jackson A (1997) Time-dependency of tangentially geostrophic core surface motions. Phys Earth Planet Inter 103:293–311

    Article  Google Scholar 

  • Jackson A, Bloxham J, and Gubbins D (1993) Time-dependent flow at the core surface and conservation of angular momentum in the coupled core–mantle system. In: Le Moue¨l J-L, Smylie DE, Herring T (eds) Dynamics of the earth’s deep interior and earth rotation. American Geophysical Union Geophysical Monograph Series, vol. 72, pp. 97–107. Washington, DC: American Geophysical Union

    Chapter  Google Scholar 

  • Jault D, Gire C, Mouel JLL (1988) Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature 333:353–356

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kiladis GN, Weickmann KM (1992) Circulation anomalies associated with tropical convection during northern winter. Mon Weather Rev 120:1900–1923

    Article  Google Scholar 

  • Lambeck K, 1980: The earth’s variable rotation: Geophysical causes and consequences. Cambridge, 1, 458

  • Lambeck K, Hopgood P (1981) The Earth’s rotation and atmospheric circulation, from 1963 to 1973. Geophys J R Astron Soc 64(1):67–89. https://doi.org/10.1111/j.1365-246X.1981.tb02659.x

    Article  Google Scholar 

  • Lambert SB, Bizouard C, Dehant V (2006) Rapid variations in polar motion during the 2005–2006 winter season. Geophys Res Lett 33:25. https://doi.org/10.1029/2006gl026422

    Article  Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett. https://doi.org/10.1029/2006gl028443

    Article  Google Scholar 

  • Lucarini V, Danihlik R, Kriegerova I, Speranza A (2008) Hydrological cycle in the Danube basin in present-day and XXII century simulations by IPCCAR4 global climate models. J Geophys Res Atmos. https://doi.org/10.1029/2007jd009167

    Article  Google Scholar 

  • Madden R, Speth P (1995) Estimates of atmospheric angular momentum, friction, and mountain torques during 1987-1988. J Atmos Sci 52:3681–3694

    Article  Google Scholar 

  • McVicar TR, Van Niel TG, Li LT, Roderick ML, Rayner DP, Ricciardulli L, Donohue RJ, 2008: Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near‐surface reanalysis output. Geophys Res Lett, 35

  • Meehl GA, Kiladis GN, Weickmann KM, Wheeler M, Gutzler DS, Compo GP (1996) Modulation of equatorial subseasonal convective episodes by tropical-extratropical interaction in the Indian and Pacific Ocean regions. J Geophys Res 101:15033–15049

    Article  Google Scholar 

  • Myhre G et al. (2013) Anthropogenic and natural radiative forcing. Climate Change 423

  • Neef LJ, Matthes K (2012) Comparison of Earth rotation excitation in data-constrained and unconstrained atmosphere models. J Geophys Res-Atmos. https://doi.org/10.1029/2011jd016555

    Article  Google Scholar 

  • Newton CW (1972) Southern hemisphere general circulation in relation to global energy and momentum balance requirements. Meteorology of the southern hemisphere, Meteor Monogr No. 13, Am Meteorol Soc, pp 215–246

  • Oort AH (1989) Angular momentum cycle in the atmosphere-ocean-solid earth system. Bull Amer Meteorol Soc 70:1231–1242

    Article  Google Scholar 

  • Paek H, Huang H-P (2012) A comparison of decadal-to-interdecadal variability and trend in reanalysis datasets using atmospheric angular momentum. J Clim 25:4750–4758. https://doi.org/10.1175/JCLI-D-11-00358.1

    Article  Google Scholar 

  • Paek H, Huang H-P (2013) Centennial trend and decadal-to-interdecadal variability of atmospheric angular momentum in CMIP3 and CMIP5 simulations. J Clim 26:3846–3864. https://doi.org/10.1175/jcli-d-12-00515.1

    Article  Google Scholar 

  • Pais A, Hulot G (2000) Length of day decade variations, torsional oscillations, and inner core superrotation: evidence from recovered core surface zonal flows. Phys Earth Planet Inter 118:291–316

    Article  Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of climate, pp 241–269

    Article  Google Scholar 

  • Pirazzoli PA, Tomasin A (2003) Recent near-surface wind changes in the central Mediterranean and Adriatic areas. Int J Climatol 23:963–973

    Article  Google Scholar 

  • Ponte RM, Rosen RD (1999) Torques responsible for evolution of atmospheric angular momentum during the 1982-83 El Niño. J Atmos Sci 56:3457–3462

    Article  Google Scholar 

  • Pryor S et al. (2009) Wind speed trends over the contiguous United States. J Geophys Res 114

  • Räisänen J (2003) CO2-induced changes in atmospheric angular momentum in CMIP2 experiments. J Clim 16:132–143. https://doi.org/10.1175/1520-0442(2003)016%3c0132:CICIAA%3e2.0.CO;2

    Article  Google Scholar 

  • Rosen RD (1993) The axial momentum balance of Earth and its fluid envelope. Surv Geophys 14(1):1–29

    Article  Google Scholar 

  • Rosen RD, Salstein DA (1983) Variations in atmospheric angular momentum on global and regional scales and the length of day. J Geophys Res 88:5451–5470

    Article  Google Scholar 

  • Satoh M, Yoshida S (1996) Response of the atmospheric angular momentum and the length of the day to the surface temperature increase for an aqua planet model. Geophys Res Lett 23:2569–2572

    Article  Google Scholar 

  • Sidorenkov NS (2009) The interaction between earth’s rotation and geophysical processes. Wiley-VCH, p 305

  • Stocker T et al (2014) Climate change 2013: The physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Tuller SE (2004) Measured wind speed trends on the west coast of Canada. Int J Climatol 24:1359–1374

    Article  Google Scholar 

  • Van Hoolst T (2007) The rotation of the terrestrial planets Treatise on geophysics. Elsevier, Amsterdam, pp 123–164

    Book  Google Scholar 

  • Vautard R, Cattiaux J, Yiou P, Thépaut J-N, Ciais P (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci 3:756–761. https://doi.org/10.1038/ngeo979

    Article  Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing 441:73–76

    Google Scholar 

  • Weickmann K (2003) Mountains, the global frictional torque, and the circulation over the Pacific–North American Region. Mon Weather Rev, 131

  • Weickmann KM, Sardeshmukh PD (1994) The atmospheric angular momentum cycle associated with a Madden–Julian oscillation. J Atmos Sci 51:3194–3208

    Article  Google Scholar 

  • Weickmann K, Khalsa S, Eischeid J (1992) The atmospheric angular-momentum cycle during the tropical Madden-Julian Oscillation. Mon Weather Rev 120:2252–2263

    Article  Google Scholar 

  • Weickmann KM, Kiladis GN, Sardeshmukh PD (1997) The dynamics of intraseasonal atmospheric angular momentum oscillations. J Atmos Sci 54:1445–1461

    Article  Google Scholar 

  • Yang XM et al (2012) The decreasing wind speed in southwestern China during 1969–2009, and possible causes. Quat Int 263:71–84. https://doi.org/10.1016/j.quaint.2012.02.020

    Article  Google Scholar 

  • Yu N, Zheng D, Wu H (1999) Contribution of new AAM data source to Delta LOD excitation. J Geodesy 73(8):385–390. https://doi.org/10.1007/s001900050257

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Peng Gongbing and Prof. Liu Suxia for helpful comments on this research. This work is supported by the National Key R&D Program of China (2017YFC0503905), Chinese National Natural Science Fund (No. 41671101), Chinese State Key Basic Research and Development Plan: The Influences of Astronomical and Geophysical Factors on Climate Change (2012CB957802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Huang.

Additional information

Responsible Editor: A.-P. Dimri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 154 kb)

Appendix

Appendix

Non-Standardized Time Series for Eq. (8) and (9)

The quantities \( \omega C\Delta \varLambda /\varLambda \) and \( M_{\text{a}} \) satisfy Eq. (9) and the quantities \( \frac{\omega C}{\varLambda }\frac{{{\text{d}}\Delta \varLambda }}{{{\text{d}}t}} \) and Tt satisfy Eq. (8). In the main text, the standardized time series are shown, here the non-standardized time series are plotted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, H., Huang, M., Zhu, L. et al. Long-term variations of atmospheric angular momentum and torque. Meteorol Atmos Phys 131, 1697–1711 (2019). https://doi.org/10.1007/s00703-019-00663-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-019-00663-y

Navigation