Skip to main content
Log in

Impact of physical parameterization schemes on track and intensity of severe cyclonic storms in Bay of Bengal

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

The objective of the present study is to investigate in detail the impact of different physical parameterization schemes on track and intensity of two severe cyclonic storms, AILA and JAL, which formed over Bay of Bengal, using a WRF mesoscale model. Three 2-way interactive nested domains with horizontal resolutions of 60, 20 and 6.6 km are used with initial and boundary conditions from NCEP-FNL data. Three sets of experiments include sensitivity to cumulus, microphysics and planetary boundary layer parameterization schemes, respectively. From cumulus parameterization experiments, Betts–Miller–Janjic is found to be better in the group. The strength of mid-latitude trough and presence of southward wind surge for cyclone AILA, the strength of the cross-equatorial flow as well as stronger easterly wind fields in the mid-tropospheric levels for cyclone JAL, and the amount of potential vorticity for both cyclones are some of the factors, which affect the large-scale flow and, hence, the track of both storms. WSM6 Microphysics scheme is able to produce a realistic feature of the cyclones as compared to the other schemes. The realistic representation of mid-tropospheric heating contributed by snow and graupel hydrometeors may be one of the reasons for better intensity simulation by WSM6. The higher values of relative humidity in and above the boundary layer favor the deep vertical mixing in YSU and thus contribute towards the better intensity simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Betts AK (1986) A new convective adjustment scheme Part I: observational and theoretical basis. Q J R Meteorol Soc 112:677–691

    Google Scholar 

  • Betts AK, Miller MJ (1986) A new convective adjustment scheme Part II: single column tests using GATE wave, BOMEX and Arctic air-mass data sets. Q J R Meteorol Soc 112:693–709

    Google Scholar 

  • Bhaskar Rao DV, Hari Prasad D (2006) Numerical prediction of the Orissa super cyclone (1999): sensitivity to the parameterization of convection, boundary layer and explicit moisture processes. Mausam 57:61–78

    Google Scholar 

  • Bhaskar Rao DV, Hari Prasad D (2007) Sensitivity of tropical cyclone intensification to boundary layer and convective processes. Nat Hazards 41:429–445

    Article  Google Scholar 

  • Bhaskar Rao DV, Hari Prasad D, Srinivas D (2009) Impact of horizontal resolution and the advantages of the nested domains approach in the prediction of tropical cyclone intensification and movement. J Geophys Res 114(D11106):1–24

    Google Scholar 

  • Bhaskar Rao DV, Srinivas D (2014) Multi-Physics ensemble prediction of tropical cyclone movement over Bay of Bengal. Nat Hazards 70:883–902

    Article  Google Scholar 

  • Cangialosi JP, Franklin JL (2013) 2012 National Hurricane Center Forecast Verification Report. http://www.nhc.noaa.gov/verification/pdfs/Verification_2012.pdf

  • Chan JCL, Gray WM (1982) Tropical cyclone movement and surrounding flow relationships. Mon Weather Rev 110:1354–1374

    Article  Google Scholar 

  • Davis C, Wang W, Chen SS, Chen Y, Corbosiero K, De Maria M, Dudhia J, Holland G, Klemp J, Michalakes J, Reeves H, Rotunno R, Synder C, Xiao O (2008) Prediction of landfalling hurricanes with the Advanced Hurricane WRF model. Mon Weather Rev 136:1990–2005

    Article  Google Scholar 

  • DeMaria M, Mainelli M, Shay LK, Knaff JA, Kaplan J (2005) Further improvements to the statistical Hurricane Intensity Prediction Scheme (SHIPS). Weather Forecast 20:531–543

    Article  Google Scholar 

  • Deshpande M, Pattanaik S, Salvekar PS (2010) Impact of physical parameterization schemes on numerical simulation of super cyclone Gonu. Nat Hazards 55:211–231

    Article  Google Scholar 

  • Deshpande M, Pattanaik S, Salvekar PS (2012) Impact of cloud parameterization on the numerical simulation of a super cyclone. Ann Geophys 30:775–795

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Dudhia J, Hong S-Y, Lim KS (2008) A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations. J Meteorol Soc Japan 86A:33–44

    Article  Google Scholar 

  • Efstathiou GA, Zoumakis NM, Melas D, Kassomenos P (2012) Impact of precipitating ice on the simulation of heavy rainfall event with advanced research WRF using two bulk microphysical schemes. Asia Pac J Atmos Sci 48(4):357–368

    Article  Google Scholar 

  • Emanuel KA (2004) Tropical cyclone energetics and structure. In: Federovich E, Rotunno R, Stevens B (eds) Atmospheric turbulence and mesoscale meteorology. Cambridge University Press, Cambridge, pp 165–192

    Chapter  Google Scholar 

  • Frank WM, Ritchie EA (2001) Effects of Vertical Wind Shear on the Intensity and Structure of Numerically Simulated Hurricanes. Mon Wea Rev 129:2249–2269

    Article  Google Scholar 

  • Franklin JL (2005) National Hurricanes center verification report, paper presented at 59th interdepartmental Hurricanes Conference Off. Of Fed. Coord. for Meteorol., Miami. http://www.ofcm.gov/ihc05/Presentations/01%20session1/s1-03franklin.ppt

  • Gray WM (1968) Global view of the origin of tropical disturbances and storms. Mon Weather Rev 96:669–700

    Article  Google Scholar 

  • Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29(14). doi:10.1029/2002GL015311

  • Hariprasad KBRR, Srinivas CV, Singh AB, Rao BV, Baskaran S, Venkatraman B (2014) Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site. Atmos Res 145–146:27–44. doi:10.1016/j.atmosres.2014.03.023

    Article  Google Scholar 

  • Hill KA, Lackmann GM (2009) Analysis of idealized tropical cyclone simulations using the weather research and forecasting model: sensitivity to turbulence parameterization and grid spacing. Mon Weather Rev 137:745–765

    Article  Google Scholar 

  • Hong S-Y, Lim J-OJ (2006) The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J Korean Meteorol Soc 42(2):129–151

    Google Scholar 

  • Hong S-Y, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a Medium-Range Forecast model. Mon Weather Rev 124:2322–2339

    Article  Google Scholar 

  • Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Janjic ZI (1990) The step-mountain coordinate: physical package. Mon Weather Rev 118:1429–1443

    Article  Google Scholar 

  • Janjic ZI (1996) The surface layer in the NCEP Eta Model. Eleventh conference on numerical weather prediction. Am Meteorol Soc Boston, Norfolk, pp 354–355

  • Janjic ZI (2000) Comments on “Development and evaluation of a convection scheme for use in climate models”. J Atmos Sci 57:3686

    Article  Google Scholar 

  • Janjic ZI (2002) Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model. NCEP Office Note 437:61

  • Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181

    Article  Google Scholar 

  • Kanase RD, Mukhopadhyay P, Salvekar PS (2014) Understanding the role of cloud and convective process in simulating the weaker cyclones over Indian Seas. Pure Appl Geophys. doi:10.1007/s00024-014-0996-3

    Google Scholar 

  • Li X, Pu Z (2008) Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon Weather Rev 136:4819–4838

    Article  Google Scholar 

  • Lord SJ, Willoughby HE, Piotrowicz JM (1984) Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J Atmos Sci 41:2836–2848

    Article  Google Scholar 

  • Mandal M, Mohanty UC, Raman S (2004) A study on the impact of parameterization of physical processes on prediction of tropical cyclones over the Bay of Bengal with NCAR/PSU mesoscale model. Nat Hazards 31:391–414

    Article  Google Scholar 

  • Marks FD, Shay LK (1998) Landfalling tropical cyclones: forecast problems and associated research opportunities. Bull Am Meteorol Soc 79:305–323

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875

    Article  Google Scholar 

  • Merrill RT (1988) Environmental influence on Hurricane intensification. J Atmos Sci 45:1678–1687

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Mukhopadhyay P, Taraphdar S, Goswami BN (2011) Influence of moist processes on track and intensity forecast of cyclones over the north Indian Ocean. J Geophys Res 116(D05226):1–21. doi:10.1029/2010JD014700

    Google Scholar 

  • Osuri KK, Mohanty UC, Routray A, Kulkarni MA, Mohapatra M (2012) Customization of WRF-ARW model with Physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean. Nat Hazards 63:1337–1359

    Article  Google Scholar 

  • Osuri KK, Mohanty UC, Routray A, Mohapatra M, Nivogi D (2013) A real-time track prediction of tropical cyclones over the north Indian Ocean using the ARW model. J Appl Meteorol Climatol 52:2476–2492

    Article  Google Scholar 

  • Pattanaik DR, Rama Rao YV (2009) Track prediction of very severe cyclone ‘Nargis’ using high resolution weather research forecasting (WRF) model. J Earth Syst Sci 118(4):309–329

    Article  Google Scholar 

  • Pattanayak S, Mohanty UC (2008) A comparative study on performance of MM5 and WRF models in simulation of tropical cyclones over Indian seas. Curr Sci 95(7):923–936

    Google Scholar 

  • Raghvan S, Sen Sarma K (2000) Tropical cyclone impacts in India and neighbourhood. In: Pielke R Jr, Pielke R Sr (eds) Storms, vol 1. Routledge, London, pp 339–356

    Google Scholar 

  • Raju PVS, Potty J, Mohanty UC (2011) Sensitivity of physical parameterizations on the prediction of tropical cyclone Nargis over the BoB using WRF model. Meteorol Atmos Phys 113:125–137

    Article  Google Scholar 

  • Raju PVS, Potty J, Mohanty UC (2012) Prediction of severe tropical cyclones over the Bay of Bengal during 2007–2010 using high-resolution mesoscale model. Nat Hazards 63:1361–1374

    Article  Google Scholar 

  • RSMC Report (2010) A report on cyclonic disturbances over North Indian Ocean during 2009. India Meteorological Department, New Delhi

  • RSMC Report (2011) A report on cyclonic disturbances over North Indian Ocean during 2010. India Meteorological Department, New Delhi

  • Ritchie EA (2002) Topic 1.2: environmental effects. Topic Chairman and Rapporteur Report. The 5th WMO international workshop on tropical cyclones IWTC-V, WMO Tech. Doc. WMO TD 1136

  • Rodgers EB, Baik JJ, Pierce HF (1994a) The environmental influence on tropical cyclone precipitation. J Appl Meteorol 33:573–593

    Article  Google Scholar 

  • Rodgers EB, Chang SW, Pierce HF (1994b) A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones. J Appl Meteor 33:129–139

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gil DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3 NCAR Tech. Note NCAR/TN- 4751 STR:1–113. http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf

  • Srinivas CV, Venkatesan R, Bhaskar Rao DV (2007) Numerical simulation of Andhra severe cyclone (2003): model sensitivity to boundary layer and convection parameterization. Pure Appl Geophys 164:1–23

    Article  Google Scholar 

  • Srinivas CV, Venkatesan R, Yesubabu V, Nagaraju C (2010) Impact of assimilation of conventional and satellite meteorological observations on the numerical simulation of a Bay of Bengal tropical cyclone of Nov 2008 near Tamilnadu using WRF model. Meteorol Atmos Phys 110:19–44

    Article  Google Scholar 

  • Srinivas CV, Bhaskar Rao DV, Yesubabu V, Baskaran R, Venkatraman B (2013) Tropical cyclone prediction over the Bay of Bengal using the high-resolution Advanced Research Weather Research and Forecasting (ARW) model. Q J R Meteorol Soc 139:1810–1825

    Article  Google Scholar 

  • Sun Y, Zhong Z, Lu W, Hu Y (2014) Why are tropical cyclone tracks over the western north pacific sensitive to the cumulus parameterization scheme in regional climate modeling? A case study for Megi (2010). Mon Weather Rev 142:1240–1249

    Article  Google Scholar 

  • Tao W, Shi JJ, Chen SS, Lang S, Lin P, Hong SY, Lidard CP, Hou A (2011) Impact of microphysical schemes on hurricane intensity and track. Asia Pacific J Atmos Sci 47(1):1–16

    Article  Google Scholar 

  • Trivedi DK, Mukhopadhyay P, Vaidya SS (2006) Impact of physical parameterization schemes on the numerical simulation of Orissa super cyclone (1999). Mausam 57(1):97–110

    Google Scholar 

  • Tuleya RE, Kurihara Y (1981) A numerical study on the effects of environmental flow on tropical storm genesis. Mon Weather Rev 109:2487–2506

    Article  Google Scholar 

  • Vaidya SS (2007) Simulation of weather systems over Indian region using mesoscale model. Meteorol Atmos Phys 95:15–26

    Article  Google Scholar 

  • Wang Y, Wu C-C (2004) Current understanding of tropical cyclone structure and intensity changes—a review. Meteor Atmos Phys 87:257–278

    Article  Google Scholar 

  • Wu C-C, Cheng H-J (1999) An observational study of environmental influences on the intensity changes of Typhoons Flo (1990) and Gene (1990). Mon Weather Rev 127:3003–3031

    Article  Google Scholar 

  • Zehr RM (1992) Tropical cyclogenesis in the western North Pacific. NOAA Tech Rep NESDIS 61:181

    Google Scholar 

  • Zheng Z, Wang Y, Wu CC (2007) Environmental dynamical control of tropical cyclone intensity—an observational study. Mon Weather Rev 135:38–59

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Director, Indian Institute of Tropical Meteorology (IITM), Pune for his encouragement and support. Authors acknowledge the use of WRF-ARW model, which is made available on the Internet by the Mesoscale and Microscale division of NCAR. The use of NCEP-FNL data, RTG-SST data, IMD observations and GrADS software is acknowledged with thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhika D. Kanase.

Additional information

Responsible Editor: S. Simmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanase, R.D., Salvekar, P.S. Impact of physical parameterization schemes on track and intensity of severe cyclonic storms in Bay of Bengal. Meteorol Atmos Phys 127, 537–559 (2015). https://doi.org/10.1007/s00703-015-0381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-015-0381-5

Keywords

Navigation