Skip to main content

Advertisement

Log in

Serotonergic targets for the treatment of l-DOPA-induced dyskinesia

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Dopamine (DA) replacement therapy with l-3,4-dihydroxyphenylalanine (l-DOPA) continues to be the gold-standard treatment for Parkinson’s disease (PD). Despite clear symptomatic benefit, long-term l-DOPA use often results in the development of l-DOPA-induced dyskinesia (LID), significantly reducing quality of life and increasing costs for PD patients and their caregivers. Accumulated research has demonstrated that several pre- and post-synaptic mechanisms contribute to LID development and expression. In particular, raphe-striatal hyperinnervation and unregulated DA release from 5-HT terminals is postulated to play a central role in LID manifestation. As such, manipulation of the 5-HT system has garnered considerable attention. Both pre-clinical and clinical research has supported the potential of modulating the 5-HT system for LID prevention and treatment. This review discusses the rationale for continued investigation of several potential anti-dyskinetic strategies including 5-HT stimulation of 5-HT1A and 5-HT1B receptors and blockade of 5-HT2A receptors and SERT. We present the latest findings from experimental and clinical investigations evaluating these 5-HT targets with the goal of identifying those with translational promise and the challenges associated with each.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansah TA, Ferguson MC, Nayyar T (2011) The 5-HT 2A receptor antagonist M100907 produces antiparkinsonian effects and decreases striatal glutamate. Front Sys Neurosci 5:1–6. https://doi.org/10.3389/fnsys.2011.00048

    Article  CAS  Google Scholar 

  • Anttila SAK, Leinonen EVJ (2001) A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Rev 7(3):249–264

    Article  PubMed  CAS  Google Scholar 

  • Ashby CR, Wang RY (1996) Pharmacological actions of the atypical antipsychotic drug clozapine: a review. Synapse 394:349–394

    Article  Google Scholar 

  • Azkona G, Sagarduy A, Aristieta A, Vazquez N, Zubillaga V, Ruíz-Ortega JA, Sánchez-pernaute R (2013) Buspirone anti-dyskinetic effect is correlated with temporal normalization of dysregulated striatal DRD1 signalling in l-DOPA-treated rats. Neuropharm. https://doi.org/10.1016/j.neuropharm.2013.11.024

    Article  Google Scholar 

  • Ba M, Kong M, Ma G, Yang H, Lu G, Chen S, Liu Z (2006) Cellular and behavioral effects of 5-HT1A receptor agonist 8-OH-DPAT in a rat model of levodopa-induced motor complications. Brain Res. https://doi.org/10.1016/j.brainres.2006.10.020

    Article  PubMed  Google Scholar 

  • Ballanger B, Beaudoin-gobert XM, Neumane S, Epinat J, Metereau X, Duperrier S, Tremblay L (2016) Imaging dopamine and serotonin systems on MPTP monkeys: a longitudinal PET investigation of compensatory mechanisms. J Neurosci 36(5):1577–1589. https://doi.org/10.1523/JNEUROSCI.2010-15.2016

    Article  PubMed  CAS  Google Scholar 

  • Bara-Jimenez W, Bibbiani F, Morris MJ, Dimitrova T, Sherzai A, Mouradian MM, Chase TN (2005) Effects of serotonin 5-HT1A agonist in advanced Parkinson’s Disease. Movement Disord 20(8):932–936. https://doi.org/10.1002/mds.20370

    Article  PubMed  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharm 38:1083–1152

    Article  CAS  Google Scholar 

  • Bartoszyk GD, Van Amsterdam C, Greiner HE, Rautenberg W, Russ H, Seyfried CA (2003) Sarizotan, a serotonin 5-HT1A receptor agonist and dopamine receptor ligand. Neurochemical profile. J Neural Transm. https://doi.org/10.1007/s00702-003-0094-7

    Article  PubMed  Google Scholar 

  • Basura GJ, Walker PD (2001) Serotonin 2A receptor regulation of striatal neuropeptide gene expression is selective for tachykinin, but not enkephalin neurons following dopamine depletion. Mol Brain Res 92:66–77

    Article  PubMed  CAS  Google Scholar 

  • Bezard E, Tronci E, Pioli EY, Li Q, Porras G, Bjorklund A, Manola C (2013) Study of the antidyskinetic effect of eltoprazine in animal models of l-DOPA-induced dyskinesia. Neurosci Res 28(8):1088–1096. https://doi.org/10.1002/mds.25366

    Article  CAS  Google Scholar 

  • Bézard E, Munoz A, Tronci E, Pioli EY, Li Q, Porras G, Carta M (2013) Anti-dyskinetic effect of anpirtoline in animal models of l-DOPA-induced dyskinesia. Neurosci Res 77(4):242–246. https://doi.org/10.1016/j.neures.2013.10.002

    Article  PubMed  CAS  Google Scholar 

  • Bibbiani F, Oh JD, Chase TN (2001) Serotonin 5-HT1A agonist improves motor complications in rodent and primate parkinsonian models. Neurology 57:1829–1834

    Article  PubMed  CAS  Google Scholar 

  • Bishop C, Walker PD (2003) Combined intrastriatal dopamine D1 and serotonin 5-HT2 receptor stimulation reveals a mechanism for hyperlocomotion in 6-hydroxydopamine-lesioned rats. Neuroscience 121:649–657. https://doi.org/10.1016/S0306-4522(03)00516-5

    Article  PubMed  CAS  Google Scholar 

  • Bishop C, Daut GS, Walker PD (2005) Serotonin 5-HT 2A but not 5-HT 2C receptor antagonism reduces hyperlocomotor activity induced in dopamine-depleted rats by striatal administration of the D1 agonist SKF 82958. Neuropharm 49:350–358. https://doi.org/10.1016/j.neuropharm.2005.03.008

    Article  CAS  Google Scholar 

  • Bishop C, Taylor JL, Kuhn DM, Eskow KL, Park JY, Walker PD (2006) MDMA and fenfluramine reduce l-DOPA-induced dyskinesia via indirect 5-HT1A receptor stimulation. Eur J Neurosci 23(January):2669–2676. https://doi.org/10.1111/j.1460-9568.2006.04790.x

    Article  PubMed  Google Scholar 

  • Bishop C, Krolewski DM, Eskow KL, Barnum CJ, Dupre KB, Deak T, Walker PD (2009) Contribution of the striatum to the effects of 5-HT1A receptor stimulation in l-DOPA-treated hemiparkinsonian rats. J Neurosci Res. https://doi.org/10.1002/jnr.21978

    Article  PubMed  PubMed Central  Google Scholar 

  • Bishop C, George JA, Buchta W, Goldenberg AA, Mohamed M, Dickinson SO, Jaunarajs KLE (2012) Serotonin transporter inhibition attenuates l-DOPA-induced dyskinesia without compromising l-DOPA efficacy in hemi-parkinsonian rats. Eur J Neurosci 36:2839–2848. https://doi.org/10.1111/j.1460-9568.2012.08202.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonifati V, Fabrizio E, Cipriani R, Vanacore N, Meco G (1994) Buspirone in levodopa-induced dyskinesias. Clin Neuropharmacol 17(1):73–82

    Article  PubMed  CAS  Google Scholar 

  • Boyer EW, Shannon M (2005) The serotonin syndrome. N Engl J Med 35(11):1112

    Article  Google Scholar 

  • Campbell BM, Walker PD (2001) MK-801 prevents dopamine D1 but not serotonin 2A stimulation of striatal preprotachykinin mRNA expression. NeuroReport 12(5):953–955

    Article  PubMed  CAS  Google Scholar 

  • Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of l-DOPA-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833. https://doi.org/10.1093/brain/awm082

    Article  PubMed  Google Scholar 

  • Castro ME, Pascual J, Romon T, Berciano J, Figols J, Pazos A (1998) 5-HT 1B receptor binding in degenerative movement disorders. Brain Res 790:323–328

    Article  PubMed  CAS  Google Scholar 

  • Chang A, Fox SH (2016) Psychosis in Parkinson’s disease: epidemiology, pathophysiology, and management. Drugs 76:1093–1118. https://doi.org/10.1007/s40265-016-0600-5

    Article  PubMed  CAS  Google Scholar 

  • Charnay Y, Leger L (2010) Brain serotonergic circuits. Dialogues Clin Neurosci 12(4):471–487

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Huang W, Lin Y, Cheng C, Liu R, Wang S-J, Ma KH (2012) Characterization of 4-[18 F]-ADAM as an imaging agent for SERT in non-human primate brain using PET: a dynamic study. Nucl Med Biol 39(2):279–285. https://doi.org/10.1016/j.nucmedbio.2011.08.002

    Article  PubMed  CAS  Google Scholar 

  • Chung KA, Carlson NE, Nutt JG (2005) paroxetine treatment does not alter the motor response to levodopa in PD. Neurology 64:1797–1798

    Article  PubMed  CAS  Google Scholar 

  • Chung YC, Kim SR, Jin BK, Alerts E (2010) Paroxetine prevents loss of nigrostriatal dopaminergic neurons by inhibiting brain inflammation and oxidative stress in an experimental model of Parkinson’s disease. J Immunol 185:1230–1237. https://doi.org/10.4049/jimmunol.1000208

    Article  PubMed  CAS  Google Scholar 

  • Conti MM, Ostock CY, Lindenbach D, Goldenberg AA, Kampton E, Dell’isola R, Bishop C (2014) Effects of prolonged selective serotonin reuptake inhibition on the development and expression of l-DOPA-induced dyskinesia in hemi- parkinsonian rats. Neuropharm 77:1–8

    Article  CAS  Google Scholar 

  • Conti MM, Meadows SM, Melikhov-sosin M, Lindenbach D, Hallmark J, Werner DF, Bishop C (2016) Monoamine transporter contributions to l-DOPA effects in hemi—parkinsonian rats. Neuropharm 110:125–134

    Article  CAS  Google Scholar 

  • Cotzias GC, Van Woert MH, Schiffer LM (1967) Aromatic amino acids and modification of parkinsonism. N Engl J Med 276(7):374–379

    Article  PubMed  CAS  Google Scholar 

  • Cotzias GC, Papavasiliou PS, Gellene R (1969) Modification of Parkinsonism—chronic treatment with l-dopa. N Engl J Med 280(7):337–345

    Article  PubMed  CAS  Google Scholar 

  • Cummings J, Isaacson S, Mills R, Williams H, Chi-burris K, Corbett A, Ballard C (2014) Pimavanserin for patients with Parkinson’ s disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet 383:533–540. https://doi.org/10.1016/S0140-6736(13)62106-6

    Article  PubMed  CAS  Google Scholar 

  • Dekundy A, Lundblad M, Danysz W, Cenci MA (2007) Modulation of l-DOPA-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behav Brain Rese 179:76–89. https://doi.org/10.1016/j.bbr.2007.01.013

    Article  CAS  Google Scholar 

  • Devane CL, Nemeroff CB (2001) Clinical pharmacokinetics of quetiapine. Clin Pharmacokinetics 40(7):509–522

    Article  CAS  Google Scholar 

  • Ding S, Li L, Zhou FM (2015) Robust presynaptic serotonin 5-HT 1B receptor inhibition of the striatonigral output and its sensitization by chronic fluoxetine treatment. J Neurophys 113(9):3397–3409

    Article  CAS  Google Scholar 

  • Donnelly K (2008) Cardiac valvular pathology: comparative pathology and animal models of acquired cardiac valvular diseases. Toxicol Pathol. https://doi.org/10.1177/0192623307312707

    Article  PubMed  Google Scholar 

  • Dupre KB, Eskow KL, Negron G, Bishop C (2007) The differential effects of 5-HT1A receptor stimulation on dopamine receptor-mediated abnormal involuntary movements and rotations in the primed hemiparkinsonian rat. Brain Res 1158(1):135–143. https://doi.org/10.1016/j.brainres.2007.05.005

    Article  PubMed  CAS  Google Scholar 

  • Dupre KB, Ostock CY, Jaunarajs KLE, Button T, Savage LM, Wolf W, Bishop C (2011) Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats. Exp Neurol 229(2):288–299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Durif F, Vidailhet M, Bonnet AM, Blin J, Agid Y (1995) Levodopa-induced dyskinesias are improved by fluoxetine. Neurology 45:1855–1858

    Article  PubMed  CAS  Google Scholar 

  • Durif F, Debilly B, Galitzky M, Morand D, Viallet F, Borg M, Rascol O (2004) Clozapine improves dyskinesias in Parkinson disease A double-blind, placebo-controlled study. Neurology 62:381–388

    Article  PubMed  CAS  Google Scholar 

  • Ener RA, Meglathery SB, Van Decker WA, Gallagher RM (2003) Serotonin syndrome and other serotonergic disorders. Am Acad Pain Med 4(1):63–74

    Article  Google Scholar 

  • Eskow Jaunarajs KL, Dupre KB, Steiniger A, Klioueva A, Moore A, Kelly C, Bishop C (2009) Serotonin 1B receptor stimulation reduces D1 receptor agonist-induced dyskinesia. NeuroReport 00(00):1–5. https://doi.org/10.1097/WNR.0b013e3283300fd7

    Article  CAS  Google Scholar 

  • Eskow KL, Dupre KB, Barnum CJ, Dickinson SO, Park JY, Bishop C (2009) The role of the dorsal raphe nucleus in the development, expression, and treatment of l-dopa-induced dyskinesia in hemiparkinsonian rats. Synapse 63:610–620. https://doi.org/10.1002/syn.20630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eskow KL, Gupta V, Alam S, Park JY, Bishop C (2007) The partial 5-HT 1A agonist buspirone reduces the expression and development of L-DOPA-induced dyskinesia in rats and improves L-DOPA efficacy. Pharmacol Biochem Behav 87(3):306–314

    Article  PubMed  CAS  Google Scholar 

  • Ferguson MC, Nayyar T, Deutch AY, Ansah TA (2010) 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson’s disease. Neuropharm 59(1–2):31–36. https://doi.org/10.1016/j.neuropharm.2010.03.013.5-HT

    Article  CAS  Google Scholar 

  • Ferguson MC, Nayyar T, Ansah TA (2014) Reverse microdialysis of a 5-HT2A receptor antagonist alters extracellular glutamate levels in the striatum of the MPTP mouse model of Parkinson’s disease. Neurochem Int 615:36–46. https://doi.org/10.1016/j.neuint.2014.03.016.Reverse

    Article  Google Scholar 

  • Fernandez HH, Trieschmann ME, Friedman JH (2004) Aripiprazole for drug-induced psychosis in Parkinson disease: preliminary experience. Clin Neuropharmacol 27(1):4–5

    Article  PubMed  CAS  Google Scholar 

  • Fidalgo C, Ko WKD, Tronci E, Li Q, Stancampiano R, Chuan Q, Carta M (2015) Effect of serotonin transporter blockade on l-DOPA-induced dyskinesia in animal models of Parkinson’s Disease. Neuroscience 298:389–396. https://doi.org/10.1016/j.neuroscience.2015.04.027

    Article  PubMed  CAS  Google Scholar 

  • Frechilla D, Cobreros A, Saldise L, Moratalla R, Insausti R, Luquin M-R, Joaquin DR (2001) Serotonin 5-HT 1A receptor expression is selectively enhanced in the striosomal compartment of chronic. Synapse 296(February 2000):288–296

    Article  Google Scholar 

  • Friedman JH, Berman RM, Goetz CG, Factor SA, Ondo WG, Wojcieszek J, Marcus RN (2006) Open-label flexible-dose pilot study to evaluate the safety and tolerability of aripiprazole in patients with psychosis associated with Parkinson’ s Disease. Movement Disord 21(12):2078–2081. https://doi.org/10.1002/mds.21091

    Article  PubMed  Google Scholar 

  • Gagnon D, Gregoire L, Paolo T Di, Parent M (2015) Serotonin hyperinnervation of the striatum with high synaptic incidence in parkinsonian monkeys. Brain Struct Funct 221(7):3675–3691. https://doi.org/10.1007/s00429-015-1125-5

    Article  PubMed  CAS  Google Scholar 

  • Gefvert O, Bergstrom M, Langstrom B, Lundberg T, Lindstrom L, Yates R (1998) Time course of central nervous dopamine-D 2 and 5-HT2 receptor blockade and plasma drug concentrations after discontinuation of quetiapine (Seroquel®) in patients with schizophrenia. Psychopharm 135:119–126

    Article  CAS  Google Scholar 

  • Ghiglieri V, Mineo D, Vannelli A, Cacace F, Mancini M, Pendolino V, Picconi B (2016) Neurobiology of disease modulation of serotonergic transmission by eltoprazine in l-DOPA-induced dyskinesia: behavioral, molecular, and synaptic mechanisms. Neurobiol Dis 86:140–153. https://doi.org/10.1016/j.nbd.2015.11.022

    Article  PubMed  CAS  Google Scholar 

  • Goetz CG, Damier P, Hicking C, Laska E, Muller T, Olanow CW, Russ H (2007) Sarizotan as a treatment for dyskinesias in Parkinson’s disease: a double-blind placebo-controlled trial. Movement Disord 22(2):179–186. https://doi.org/10.1002/mds.21226

    Article  PubMed  Google Scholar 

  • Goetz CG, Laska E, Hicking C, Stat D, Damier P, Müller T, Russ H (2009) Placebo influences on dyskinesia in Parkinson’s disease. Movement Disord 23(5):700–707. https://doi.org/10.1002/mds.21897.Placebo

    Article  Google Scholar 

  • Grégoire L, Samadi P, Graham J, Bédard PJ, Bartoszyk GD, Di Paolo T (2009) Low doses of sarizotan reduce dyskinesias and maintain antiparkinsonian efficacy of l-Dopa in parkinsonian monkeys. Parkinson Relat D 15(6):445–452

    Article  Google Scholar 

  • Gresch PJ, Walker PD (1999a) Synergistic interaction between serotonin-2 receptor and dopamine D1 receptor stimulation on striatal preprotachykinin mRNA expression in the 6-hydroxydopamine lesioned rat. Mol Brain Res 70:125–134

    Article  PubMed  CAS  Google Scholar 

  • Gresch P, Walker P (1999b) Serotonin-2 receptor stimulation normalizes striatal preprotachykinin messenger RNA in an animal model of Parkinson’s Disease. Neuroscience 93(3):831–841

    Article  PubMed  CAS  Google Scholar 

  • Grunder G, Kungel M, Ebrecht M, Gorocs T, Modell S (2006) Aripiprazole: pharmacodynamics of a dopamine partial agonist for the treatment of schizophrenia. Pharmacopsychiatry 39:S21–S25. https://doi.org/10.1055/s-2006-931485

    Article  PubMed  CAS  Google Scholar 

  • Haberzettl R, Bert B, Fink H, Fox MA (2013) Animal models of the serotonin syndrome: a systematic review. Behav Brain Res 256:328–345. https://doi.org/10.1016/j.bbr.2013.08.045

    Article  PubMed  CAS  Google Scholar 

  • Hagino Y, Takamatsu Y, Yamamoto H, Iwamura T, Murphy DL, Uhl GR, Ikeda K (2011) Effects of MDMA on extracellular dopamine and serotonin levels in mice lacking dopamine and/or serotonin transporters. Curr Neuropharmacol 9(1):91–95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamadjida A, Nuara SG, Veyres N, Frouni I, Kwan C, Sid-Otmane L, Huot P (2017) The effect of mirtazapine on dopaminergic psychosis and dyskinesia in the parkinsonian marmoset. Psychopharmacol 234(6):905–911

    Article  CAS  Google Scholar 

  • Hamadjida A, Nuara SG, Gourdon JC, Huot P (2018) The effect of mianserin on the severity of psychosis and dyskinesia in the parkinsonian marmoset. Prog Neuropsychopharmacol Biol Psychiatry 81:367–371

    Article  PubMed  CAS  Google Scholar 

  • Hammerstad JP, Carter J, Nutt JG, Casten GC, Shrotriya RC, Alms DR, Temple D (1986) Buspirone in Parkinson’s Disease.pdf. Clinl Neuropharmacol 9(6):556–560

    Article  CAS  Google Scholar 

  • Henderson J, Yiannikas C, Graham JS (1992) Effect of ritanserin, a highly selective 5-HT2 receptor antagonist, on Parkinson’s disease. Clinl Exper Neurol 29:277–282

    CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Humphrey PPA (1994) Union of pharmacology for 5-hydroxytryptamine classification (serotonin). Pharmacol Rev 46(2):157–203

    PubMed  CAS  Google Scholar 

  • Hummeli T, Hummel C, Friedeli I, Pauli E, Kobal G (1994) A comparison of the antinociceptive effects of imipramine, tramadol and anpirtoline. Brit J Pharmacol 37:325–333

    Article  Google Scholar 

  • Huot P, Johnston TH, Lewis KD, Koprich JB, Reyes MG, Fox SH, Brotchie JM (2011a) Characterization of 3,4-methylenedioxymethamphetamine (MDMA) enantiomers in vitro and in the MPTP-lesioned primate: R-MDMA reduces severity of dyskinesia, whereas S-MDMA extends duration of ON-time. J Neurosci 31(19):7190–7198. https://doi.org/10.1523/JNEUROSCI.1171-11.2011

    Article  PubMed  CAS  Google Scholar 

  • Huot P, Fox SH, Newman-Tancredi A, Brotchie JM (2011b) Anatomically selective serotonergic type 1A and serotonergic type 2A therapies for Parkinson’s disease: an approach to reducing dyskinesia without exacerbating parkinsonism? J Pharmacol Exp Ther 339(1):2–8

    Article  PubMed  CAS  Google Scholar 

  • Huot P, Johnston TH, Gandy MN, Reyes MG, Fox SH, Piggott MJ, Brotchie JM (2012a) The monoamine re-uptake inhibitor UWA-101 improves motor fluctuations in the MPTP-lesioned common marmoset. PLoS ONE 7(9):1–7. https://doi.org/10.1371/journal.pone.0045587

    Article  CAS  Google Scholar 

  • Huot P, Johnston TH, Koprich JB, Winkelmolen L, Fox SH, Brotchie JM (2012b) Regulation of cortical and striatal 5-HT 1A receptors in the MPTP-lesioned macaque. Neurobiol Aging 33:9–19. https://doi.org/10.1016/j.neurobiolaging.2010.09.011

    Article  CAS  Google Scholar 

  • Huot P, Johnston TH, Winkelmolen L, Fox SH, Brotchie JM (2012c) 5-HT 2A receptor levels increase in MPTP-lesioned macaques treated chronically with l-DOPA. Neurobiol Aging 33(1):194.e5–194.e15. https://doi.org/10.1016/j.neurobiolaging.2010.04.035

    Article  CAS  Google Scholar 

  • Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM (2013) The pharmacology of l-DOPA-induced dyskinesia in Parkinson’ s Disease. Pharmacol Rev 65:171–222

    Article  PubMed  CAS  Google Scholar 

  • Huot P, Johnston TH, Lewis KD, Koprich JB, Reyes MG, Fox SH, Brotchie JM (2014) UWA-121, a mixed dopamine and serotonin re-uptake inhibitor, enhances l-DOPA anti-parkinsonian action without worsening dyskinesia or psychosis-like behaviours in the MPTP-lesioned common marmoset. Neuropharm 82:76–87. https://doi.org/10.1016/j.neuropharm.2014.01.012

    Article  CAS  Google Scholar 

  • Huot P, Johnston TH, Fox SH, Newman-tancredi A, Brotchie JM (2015) Neuropharmacology The highly-selective 5-HT 1A agonist F15599 reduces l-DOPA-induced dyskinesia without compromising anti-parkinsonian benefits in the MPTP-lesioned macaque. Neuropharm 97:306–311. https://doi.org/10.1016/j.neuropharm.2015.05.033

    Article  CAS  Google Scholar 

  • Huot P, Sgambato-Faure V, Fox SH, McCreary AC (2017) Serotonergic approaches in Parkinson’ s Disease: translational perspectives, an update. ACS Chem Neurosci 8:973–986. https://doi.org/10.1021/acschemneuro.6b00440

    Article  PubMed  CAS  Google Scholar 

  • Iderberg H, Mccreary AC, Varney MA, Cenci MA, Newman-Tancredi A (2015) Neuropharmacology activity of serotonin 5-HT 1A receptor “biased agonists” in rat models of Parkinson’s disease and l-DOPA-induced dyskinesia. Neuropharm 93:52–67. https://doi.org/10.1016/j.neuropharm.2015.01.012

    Article  CAS  Google Scholar 

  • Iravani MM, Jackson MJ, Kuoppamamaki M, Smith LA, Jenner P (2003) 3,4-Methylenedioxymethamohetamine (ecstasy) inhibits dyskinesia expression and normalizes motor activity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates. J Neurosci 23(27):9107–9115

    Article  PubMed  CAS  Google Scholar 

  • Iravani MM, Tayarani-binazir K, Chu WB, Jackson MJ, Jenner P (2006) Primates, the selective 5-hydroxytryptamine 1a agonist (R)-(+)-8-OHDPAT inhibits levodopa-induced dyskinesia but only with increased motor disability. J Pharmacol Exp Ther 319(3):1225–1234. https://doi.org/10.1124/jpet.106.110429.glutamate

    Article  PubMed  CAS  Google Scholar 

  • Johnson SW, Mercuri NB, North RA (1992) 5-Hydroxytryptamine 1B receptors block the GABA, synaptic potential in rat dopamine neurons. J Neurosci 12(5):2000–2006

    Article  PubMed  CAS  Google Scholar 

  • Johnston TH, Millar Z, Huot P, Wagg K, Thiele S, Salomonczyk D, Brotchie JM (2012) A novel MDMA analog, UWA-101, that lacks psychoactivity and cytotoxicity, enhances l-DOPA benefit in parkinsonian primates. FASEB 26(5):2154–2163. https://doi.org/10.1096/fj.11-195016

    Article  CAS  Google Scholar 

  • Kalant H (2001) The pharmacology and toxicology of “ecstasy” (MDMA) and related drugs. CMAJ Can Med Assoc J 165(7):917–928

    CAS  Google Scholar 

  • Kannari K, Kurahashi K, Tomiyama M, Maeda T, Arai A, Baba M, Matsunaga M (2002) Tandospirone citrate, a selective 5-HT1A agonist, alleviates L-DOPA-induced dyskinesia in patients with Parkinson’s disease. No to shinkei 54(2):133–137

    PubMed  Google Scholar 

  • Kannari K, Shen H, Arai A, Tomiyama M, Baba M (2006) Reuptake of l-DOPA-derived extracellular dopamine in the striatum with dopaminergic denervation via serotonin transporters. Neurosci Lett 402:62–65. https://doi.org/10.1016/j.neulet.2006.03.059

    Article  PubMed  CAS  Google Scholar 

  • Katzenschlager R, Manson AJ, Evans A, Watt H, Lees AJ (2004) Low dose quetiapine for drug induced dyskinesias in Parkinson’s disease: a double blind cross over study. J Neurol Neurosurg Psychiatry 75:295–297

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ko WKD, Li Q, Cheng LY, Morelli M, Carta M, Bezard E (2017) A preclinical study on the combined effects of repeated eltoprazine and preladenant treatment for alleviating L-DOPA-induced dyskinesia in Parkinson's disease. Eur J Pharmacol 813:10–16

    Article  PubMed  CAS  Google Scholar 

  • Kuan W, Zhao J, Barker RA (2008) The role of anxiety in the development of levodopa-induced dyskinesias in an animal model of Parkinson’ s disease, and the effect of chronic treatment with the selective serotonin reuptake inhibitor citalopram. Psychopharm 197:279–293. https://doi.org/10.1007/s00213-007-1030-6

    Article  CAS  Google Scholar 

  • Larsen MB, Sonders MS, Mortensen OV, Larson GA, Zahniser NR, Amara SG (2011) Dopamine transport by the serotonin transporter: mechanistically distinct mode of substrate translocation. J Neurosci 31(17):6605–6615. https://doi.org/10.1523/JNEUROSCI.0576-11.2011.Dopamine

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lebsanft HB, Kohles T, Kovar K-A, Schmidt WJ (2005) 3,4-Methylenedioxymethamphetamine counteracts akinesia enantioselectively in rat rotational behavior and catalepsy. Synapse 55:148–155. https://doi.org/10.1002/syn.20102

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Seongho S, Lee JS, Kim H, Kim YK, Beom SJ (2015) Putaminal serotonergic innervation Monitoring dyskinesia risk in Parkinson disease. Neurology 85(10):853–860

    Article  PubMed  CAS  Google Scholar 

  • Lejeune F, Newman-Tancredi A, Audinot V, Millan MJ (1997) Interactions of (+)- and -8- and 7-hydroxy-2- (di-n-propylamino) tetralin at human (h)D3, hD2 and h serotonin 1A receptors and their modulation of the activity of serotoninergic and dopaminergic neurones in rats. J Pharmacol Exp Ther 280(3):1241–1249

    PubMed  CAS  Google Scholar 

  • Ligeois J, Bruhwyler J, Damas J, Rogister F, Masereel B, Geczy J, Delarge J (1995) Modulation of clozapine structure increases its selectivity for the dopamine D4 receptor. Eur J Pharmacol 273:R1–R3

    Article  Google Scholar 

  • Linazasoro G (2000) Worsening of Parkinson’ s disease by citalopram. Parkinsonism Relat D 6(111–113):111–113

    Article  CAS  Google Scholar 

  • Lindenbach D, Palumbo N, Ostock CY, Vilceus N, Conti MM, Bishop C (2015) Side effect profile of 5-HT treatments for Parkinson’s disease and l-DOPA-induced dyskinesia in rats. Brit J Pharmacol 172(1):119–130

    Article  CAS  Google Scholar 

  • Lindgren HS, Andersson DR, Lagerkvist S, Nissbrandt H, Cenci MA (2010) l-Dopa-induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson’s disease: temporal and quantitative relationship to the expression of dyskinesia. J Neurochem 112:1465–1476. https://doi.org/10.1111/j.1471-4159.2009.06556.x

    Article  PubMed  CAS  Google Scholar 

  • Llado-Pelfort L, Assié M-B, Newman-Tancredi A, Artigas F, Celada P (2010) Preferential in vivo action of F15599, a novel 5-HT 1A receptor agonist, at postsynaptic 5-HT1A receptors. Brit J Pharmacol. https://doi.org/10.1111/j.1476-5381.2010.00738.x

    Article  Google Scholar 

  • Ludwig CL, Weinberger DR, Bruno G, Gillespie M, Bakker K, LeWitt PA, Chase TN (1986) Buspirone, Parkinson’s Disease, and the locus ceruleus.pdf. Clin Neuroph 9(4):373–378

    Article  CAS  Google Scholar 

  • Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA (2002) Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’ s disease. Eur J Neurosci 15:120–132

    Article  PubMed  CAS  Google Scholar 

  • Marin C, Aguilar E, Rodriguez-Oroz MC, Bartoszyk GD, Obeso JA (2009) Local administration of sarizotan into the subthalamic nucleus attenuates levodopa-induced dyskinesias in 6-OHDA-lesioned rats. Psychopharmacol 204(2):241–250

    Article  CAS  Google Scholar 

  • Martel J-C, Assié M, Buritova J, Lauressergues E, Cosi C, Heusler P, Cussac D (2009) Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT 1A receptor agonist. Brit J Pharmacol 156:338–353. https://doi.org/10.1111/j.1476-5381.2008.00001.x

    Article  CAS  Google Scholar 

  • Mazzucchi S, Frosini D, Ripoli A, Nicoletti V, Linsalata G, Bonuccelli U, Ceravolo R (2015) Serotonergic antidepressant drugs and l-dopa-induced dyskinesias in Parkinson’s disease. Acta Neurol Scandinavica 6:1–5. https://doi.org/10.1111/ane.12314

    Article  CAS  Google Scholar 

  • Mccreary AC, Varney MA, Newman-Tancredi A (2016) Neuropharmacology the novel 5-HT 1A receptor agonist, NLX-112 reduces l-DOPA-induced abnormal involuntary movements in rat: a chronic administration study with microdialysis measurements. Neuropharmacology 105:651–660. https://doi.org/10.1016/j.neuropharm.2016.01.013

    Article  PubMed  CAS  Google Scholar 

  • Meadows SM, Chambers NE, Conti MM, Bossert SC, Tasber C, Sheena E, Bishop C (2017) Characterizing the differential roles of striatal 5-HT 1A auto- and hetero-receptors in the reduction of l-DOPA-induced dyskinesia. Exp Neurology 292:168–178. https://doi.org/10.1016/j.expneurol.2017.03.013

    Article  CAS  Google Scholar 

  • Meco G, Marini S, Lestingi L, Linfante I (1988) Controlled single-blind crossover study of ritanserin and placebo in l-dopa-induced dyskinesias in Parkinson’s disease. Curr Ther Res 43(2):262–270

    Google Scholar 

  • Meco G, Fabrizio E, Rezze S Di, Alessandri A, Pratesi L (2003) Mirtazapine in l-Dopa-induced dyskinesias. Clin Neuropharm 26(4):179–181

    Article  CAS  Google Scholar 

  • Meco G, Stirpe P, Edito F, Purcaro C, Valente M, Bernardi S, Vanacore N (2009) Aripiprazole in l-dopa-induced dyskinesias : a one-year open-label pilot study. J Neur Tranns 116:881–884. https://doi.org/10.1007/s00702-009-0231-z

    Article  CAS  Google Scholar 

  • Miguelez C, Navailles S, Delaville C, Marquis L, Lagière M, Benazzouz A, De Deurwaerdère P (2016) l-DOPA elicits non-vesicular releases of serotonin and dopamine in hemiparkinsonian rats in vivo. Eur Neuropsychopharmacol 26(8):1297–1309

    Article  PubMed  CAS  Google Scholar 

  • Mills R, Revell S, Bahr D, Williams H, Johnson A, Friedman JH (2008) A double-blind, placebo-controlled, dose-escalation trial of pimavanserin in Parkinson’s disease and psychosis. Mov Disord 23:S221–S222

    Google Scholar 

  • Morgante L, Epifanio A, Spina E, Zappia M, Di Rosa AE, Marconi R, Quattrone A (2004) Quetiapine and clozapine in parkinsonian patients with dopaminergic psychosis. Clin Neuropharmacol 27(4):153–156

    Article  PubMed  CAS  Google Scholar 

  • Morin N, Morissette M, Gregoire L, Rajput A, Di Paolo T (2015) Contribution of brain serotonin subtype 1B receptors in levodopa- induced motor complications. Neuropharmacology 99:356–368. https://doi.org/10.1016/j.neuropharm.2015.08.002

    Article  PubMed  CAS  Google Scholar 

  • Müller T, Olanow CW, Nutt J, Hicking C, Laska E, Russ H (2006) The Paddy-2 study: the evaluation of sarizotan for treatment-associated for dyskinesia in PD patients. Mov Disord 21(Suppl 15):S591

    Google Scholar 

  • Ng KY, Chase TN, Colburn RW, Kopin IJ (1970) l-Dopa-induced release of cerebral monoamines. Science 170(3953):76–77

    Article  PubMed  CAS  Google Scholar 

  • Oh JD, Bibbiani F, Chase TN (2002) Quetiapine attenuates levodopa-induced motor complications in rodent and primate parkinsonian models. Exp Neurol 177:557–564. https://doi.org/10.1006/exnr.2002.8009

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Damier P, Goetz CG, Mueller T, Nutt J, Rascol O, Russ H (2004) Disease patients with levodopa-induced dyskinesias (the SPLENDID study. Clin Neuropharm 27(2):58–62

    Article  CAS  Google Scholar 

  • Ostock CY, Dupre KB, Eskow Jaunarajs KL, Walters H, George J, Krolewski D, Bishop C (2011) Role of the primary motor cortex in l-DOPA-induced dyskinesia and its modulation by 5-HT1A receptor stimulation. Neuropharmacology 61:753–760. https://doi.org/10.1016/j.neuropharm.2011.05.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Owens MJ, Morgan WN, Plott SJ, Nemeroff CB (1997) Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J Pharmacol Exp Ther 283(3):1305–1322

    PubMed  CAS  Google Scholar 

  • Owens MJ, Knight DL, Nemeroff CB (2001) Second-generation SSRIs: human Monoamine transporter binding profile of Escitalopram and R-Fluoxetine. Biol Psychiat 50:345–350

    Article  PubMed  CAS  Google Scholar 

  • Pagano G, Niccolini F, Fusar-Poli P, Politis M (2017) Serotonin transporter in Parkinson’s Disease: a meta-analysis of positron emission tomography studies. Annals of Neurol 81:171–180. https://doi.org/10.1002/ana.24859

    Article  Google Scholar 

  • Paolone G, Brugnoli A, Arcuri L, Mercatelli D, Morari M (2015) Eltoprazine prevents levodopa-induced dyskinesias by reducing striatal glutamate and direct pathway activity. Movement Disord 30(13):1728–1738. https://doi.org/10.1002/mds.26326

    Article  PubMed  CAS  Google Scholar 

  • Parkinson Study Group (1999) Low-dose clozapine for the treatment of drug-induced psychosis in Parkinson’s Disease. N Engl J Med 340(10):757–763

    Article  Google Scholar 

  • Parrott AC (2002) Recreational ecstasy/MDMA, the serotonin syndrome, and serotonergic neurotoxicity. Pharmacol Biochem Behav 71(4):837–844

    Article  PubMed  CAS  Google Scholar 

  • Pinna A, Ko WKD, Costa G, Tronci E, Fidalgo C, Simola N, Morelli M (2016) Antidyskinetic effect of A2A and 5HT1A/1B receptor ligands in two animal models of Parkinson’s disease. Mov Disord 31(4):501–511

    Article  PubMed  CAS  Google Scholar 

  • Politis M, Wu K, Loane C, Kiferle L, Molloy S, Brooks DJ, Piccini P (2010) Staging of serotonergic dysfunction in Parkinson’s Disease : an in vivo PET study C-DASB. Neurobiol Dis 40(1):216–221. https://doi.org/10.1016/j.nbd.2010.05.028

    Article  PubMed  CAS  Google Scholar 

  • Politis M, Wu K, Loane C, Brooks DJ, Kiferle L, Turkheimer FE, Piccini P (2014) Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson’s disease patients. J Clin Invest 124(3):1340–1349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pompeiano M, Palacious JM, Mengod G (1992) Distribution and cellular localization of mRNA coding for5HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci 12(2):1992

    Article  Google Scholar 

  • Pompeiano M, Palacious JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs, comparison between 5-HT2A and 5-HT2C receptors. Mol Brain Res 23:163–178

    Article  PubMed  CAS  Google Scholar 

  • Rampello L, Chiechio S, Raffaele R, Vecchio I, Nicoletti F (2002) The SSRI, citalopram, improves bradykinesia in patients with Parkinson’s Disease treated with l-Dopa. Clin Neuropharmacol 25(1):21–24

    Article  PubMed  CAS  Google Scholar 

  • Rascol O, Damier P, Goetz CG et al (2006) A large phase III study to evaluate the safety and efficacy of sarizotan in the treatment of l-dopa-induced-dyskinesia associated with PD: the Paddy-1 study. Mov Disord 21(Suppl 15):S492–S493

    Google Scholar 

  • Reddy S, Factor SA, Molho ES, Feustel PJ (2002) The effect of quetiapine on psychosis and motor function in parkinsonian patients with and without dementia. Mov Disord 17(4):676–681

    Article  PubMed  Google Scholar 

  • Riahi G, Morissette M, Samadi P, Parent M, Di Paolo T (2013) Basal ganglia serotonin 1B receptors in parkinsonian monkeys with l-DOPA-induced dyskinesia. Biochem Pharmacol 86:970–978. https://doi.org/10.1016/j.bcp.2013.08.005

    Article  PubMed  CAS  Google Scholar 

  • Roberts C (2006) ACP-103, a 5-HT2A receptor inverse agonist. Curr Opin Investig Drugs 7:653–660

    PubMed  CAS  Google Scholar 

  • Roth BL (2011) 5-HT2A Serotonin Receptor Biology Interacting proteins, kinases, and paradoxical regulation. Neuropharmacology 61(3):348–354. https://doi.org/10.1016/j.neuropharm.2011.01.012.5-HT

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rothman RB, Clark RD, Partilla JS, Baumann MH (2003) (+)-Fenfluramine and Its major metabolite, (+)-norfenfluramine, are potent substrates for norepinephrine transporters. J Pharmacol Exp Ther 305(3):1191–1199. https://doi.org/10.1124/jpet.103.049684.and

    Article  PubMed  CAS  Google Scholar 

  • Roussakis AA, Politis M, Towey D, Piccini P (2016) Serotonin-to-dopamine transporter ratios in Parkinson disease relevance for dyskinesias. Neurology 86(12):1152–1158

    Article  PubMed  CAS  Google Scholar 

  • Rudnick G (2006) Structure/function relationships in serotonin transporter: new insights from the structure of a bacterial transporter. In: Sitte HH, Freissmuth M (eds) Neurotransmitter transporters. Handbook of Experimental Pharmacology, vol 175. Springer, Berlin, Heidelberg, pp 59–73

  • Rylander D, Parent M, Sullivan SSO, Dovero S, Lees AJ, Bezard E, Cenci MA (2010) Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol. https://doi.org/10.1002/ana.22097

    Article  PubMed  Google Scholar 

  • Sari Y, Miquel M, Brisorgueil M, Ruiz G, Doucet E, Hamon M, Verge D (1999) Cellular and subcellular localization of 5-hydroxytryptamine 1B receptors in the rat central nervous system: immunocytochemical, autoradiographic and lesion studies. Neuroscience 88(3):899–915

    Article  PubMed  CAS  Google Scholar 

  • Schipper J, Tulp MTM, Sijbesma H (1990) Neurochemical profile of eltoprazine.pdf. Drug Metab Drug Interact 8(1–2):85–114

    CAS  Google Scholar 

  • Schlicker E, Werner U, Nickel B, Hamon M, Gozlan H, Nickel B, Gothert M (1992) Anpirtoline, a novel, highly potent 5HT1B receptor agonist with antinociceptive/antidepressant-like actions in rodent. Brit J Pharmacol 105:732–738

    Article  CAS  Google Scholar 

  • Shi WX, Nathaniel P, Bunney BS (1995) Ritanserin, a 5-HT2A/2C antagonist, reverses direct dopamine agonist-induced inhibition of midbrain dopamine neurons. J Pharmacol Exp Ther 274(2):735–740

    PubMed  CAS  Google Scholar 

  • Stahl SM (1998) Mechanism of action of serotonin selective reuptake inhibitors Serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disorders 51:215–235

    Article  PubMed  CAS  Google Scholar 

  • Stahl SM (2016) Mechanism of action of pimavanserin in Parkinson’ s disease psychosis : targeting serotonin 5HT2A and 5HT2C receptors. CNS Spectr 21:271–275. https://doi.org/10.1017/S1092852916000407

    Article  PubMed  Google Scholar 

  • Strecker K, Wegner F, Hesse S, Becker G-A, Patt M, Meyer P, Sabri O (2011) Preserved serotonin transporter binding in de novo Parkinson’ s disease: negative correlation with the dopamine transporter. J Neurol 258:19–26. https://doi.org/10.1007/s00415-010-5666-5

    Article  PubMed  CAS  Google Scholar 

  • Svenningsson P, Rosenblad C, Arvidsson KE, Wictorin K, Keywood C, Shankar B, Widner H (2015) Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson’s disease: a dose-finding study. Brain. https://doi.org/10.1093/brain/awu409

    Article  PubMed Central  PubMed  Google Scholar 

  • Tahar AH, Belanger N, Bangassoro E, Gregoire L, Bedard PJ (2000) Antidyskinetic effect of JL-18, a clozapine analog, in parkinsonian monkeys. Eur J Pharmacol 399:183–186

    Article  CAS  Google Scholar 

  • Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340:249–258

    Article  PubMed  CAS  Google Scholar 

  • Taylor JL, Bishop C, Ullrich T, Rice KC, Walker PD (2006) Serotonin 2A receptor antagonist treatment reduces dopamine D1 receptor-mediated rotational behavior but not l-DOPA-induced abnormal involuntary movements in the unilateral dopamine-depleted rat. Neuropharmacology 50:761–768. https://doi.org/10.1016/j.neuropharm.2005.12.004

    Article  PubMed  CAS  Google Scholar 

  • Tronci E, Fidalgo C, Stancampiano R, Carta M (2015) Effect of selective and non-selective serotonin receptor activation on l-DOPA-induced therapeutic efficacy and dyskinesia in parkinsonian rats. Behav Brain Res 292:300–304. https://doi.org/10.1016/j.bbr.2015.06.034

    Article  PubMed  CAS  Google Scholar 

  • van de Vijver D, Roos R, Jansen P, Porsius A, de Boer A (2002) Start of a selective serotonin reuptake inhibitor (SSRI) and increase of antiparkinsonian drug treatment in patients on levodopa. Brit J Clin Pharmacol 54:168–170

    Article  Google Scholar 

  • Vanover KE, Betz AJ, Weber SM, Bibbiani F, Kielaite A, Weiner DM, Salamone JD (2008) A 5-HT 2A receptor inverse agonist, ACP-103, reduces tremor in a rat model and levodopa-induced dyskinesias in a monkey model. Pharmacol Biochem Behav 90:540–544. https://doi.org/10.1016/j.pbb.2008.04.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varnas K, Bonaventure P, Sedvall G (2001) Autoradiographic mapping of 5-HT 1B and 5-HT 1D receptors in the post mortem human brain using [3 H] GR 125743. Brain Res 915:47–57

    Article  PubMed  CAS  Google Scholar 

  • Verrico CD, Miller GM, Madras BK (2007) MDMA (Ecstasy) and human dopamine, norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology 189(4):489–503

    Article  PubMed  CAS  Google Scholar 

  • Visanji NP, Gomez-ramirez J, Johnston TH, Pires D, Voon V, Brotchie JM, Fox SH (2006) Pharmacological characterization of psychosis-like behavior in the MPTP-lesioned nonhuman primate model of Parkinson’ s Disease. Movement Disord 21(11):1879–1891. https://doi.org/10.1002/mds.21073

    Article  PubMed  Google Scholar 

  • Yahr MD, Duvoisin RC, Schear MJ, Barrett RE, Hoehn MM (1969) Treatment of Parkinsonism with levodopa. Arch Neurol (Chic) 21:343–354

    Article  CAS  Google Scholar 

  • Yamato H, Kannari K, Shen H, Suda T, Matsunaga M (2000) Fluoxetine reduces l-DOPA-derived extracellular DA in the 6-OHDA-lesioned rat striatum. NeuroReport 12(68):1123–1126

    Google Scholar 

  • Yoshida K, Sugita T, Higuchil H, Hishikawa Y (1998) Effect of tandospirone on tardive dyskinesia and parkinsonian symptoms. Eur Pschiatry 13(8):421–422

    Article  CAS  Google Scholar 

  • Zhang X, Andren PE, Greengard P, Svenningsson P (2007) Evidence for a role of the 5-HT1B receptor and its adaptor protein, p11, in l-DOPA treatment of an animal model of Parkinsonism. Proc Nat Acad Sci 105(6):2163–2168

    Article  Google Scholar 

Download references

Acknowledgements

Thank you to Carolyn Saito for her constructive feedback on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Bishop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanza, K., Bishop, C. Serotonergic targets for the treatment of l-DOPA-induced dyskinesia. J Neural Transm 125, 1203–1216 (2018). https://doi.org/10.1007/s00702-017-1837-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1837-1

Keywords

Navigation