Skip to main content

Advertisement

Log in

Gene therapy approaches in the non-human primate model of Parkinson’s disease

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The field of gene therapy has recently witnessed a number of major conceptual changes. Besides the traditional thinking that comprises the use of viral vectors for the delivery of a given therapeutic gene, a number of original approaches have been recently envisaged, focused on using vectors carrying genes to further modify basal ganglia circuits of interest. It is expected that these approaches will ultimately induce a therapeutic potential being sustained by gene-induced changes in brain circuits. Among others, at present, it is technically feasible to use viral vectors to (1) achieve a controlled release of neurotrophic factors, (2) conduct either a transient or permanent silencing of any given basal ganglia circuit of interest, (3) perform an in vivo cellular reprogramming by promoting the conversion of resident cells into dopaminergic-like neurons, and (4) improving levodopa efficacy over time by targeting aromatic l-amino acid decarboxylase. Furthermore, extensive research efforts based on viral vectors are currently ongoing in an attempt to better replicate the dopaminergic neurodegeneration phenomena inherent to the progressive intraneuronal aggregation of alpha-synuclein. Finally, a number of incoming strategies will soon emerge over the horizon, these being sustained by the underlying goal of promoting alpha-synuclein clearance, such as, for instance, gene therapy initiatives based on increasing the activity of glucocerebrosidase. To provide adequate proof-of-concept on safety and efficacy and to push forward true translational initiatives based on these different types of gene therapies before entering into clinical trials, the use of non-human primate models undoubtedly plays an instrumental role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  • Allen Reish HE, Standaert DG (2015) Role of alpha-synuclein in inducing innate and adaptative immunity in Parkinson disease. J Parkinsons Dis 5:1–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 104:5163–5168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aschauer DF, Kreuz S, Rumpel S (2013) Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8:e76310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayuso E, Mingozzi F, Bosch F (2010) Production, purification and characterization of adeno-associated vectors. Curr Gene Ther 10:423–436

    Article  CAS  PubMed  Google Scholar 

  • Bankiewicz KS, Forsayeth J, Eberling JL, Sanchez-Pernaute R, Pivirotto P, Bringas J, Herscovitch P, Carson RE, Eckelman W, Reuter B, Cunningham J (2006) Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 14:564–570

    Article  CAS  PubMed  Google Scholar 

  • Bartlett JS, Samulski RJ, McCown TJ (1998) Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther 9:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Bartlett JS, Kleinschmidt J, Boucher RC, Samulski RJ (1999) Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab’y)2 antibody. Nat Biotechnol 17:181–186

    Article  CAS  PubMed  Google Scholar 

  • Bartus RT, Herzog CD, Chu Y, Wilson A, Brown L, Siffert J, Johnson EM Jr, Olanow CW, Mufson EJ, Kordower JH (2011) Bioactivity of AAV2-Nurturin gene therapy (CERE-120): differences between Parkinson’s disease and nonhuman primate models. Mov Disord 26:27–36

    Article  PubMed  Google Scholar 

  • Bartus RT, Kordower JH, Johnson EM Jr, Brown L, Kruegel BR, Chu Y, Baumann TL, Lang AE, Olanow CW, Herzog CD (2015) Post-mortem assessment of the short and long-term effects of the trophic factor neurturin in patients with α-synucleinopathies. Neurobiol Dis 78:162–171

    Article  CAS  PubMed  Google Scholar 

  • Bellochio L, Ruiz-Calvo A, Chiarlone A, Cabanas M, Resel E, Cazalets J-R, Blázquez C, Cho YH, Galve-Roperth I, Guzman M (2016) Sustained Gq-protein signaling disrupts striatal circuits via JNK. J Neurosci 36:10611–10624

    Article  CAS  Google Scholar 

  • Besnard F, Brenner M, Nakatani Y, Chao R, Purohit H, Freese E (1991) Multiple interacting sites regulate astrocyte-specific transcription of the human gene for glial fibrillary acidic protein. J Biol Chem 266:18877–18883

    CAS  PubMed  Google Scholar 

  • Blanz J, Saftig P (2016) Parkinson’s disease: acid-glucocerebrosidase activity and alpha-synuclein clearance. J Neurochem 139(Suppl 1):198–215

    Article  CAS  PubMed  Google Scholar 

  • Boender AJ, de Jong JW, Boekhoudt L, Luijendijk MC, van der Plasse G, Adan RA (2014) Combined use of the canine adenovirus-2 and DREADD-technology to activate specific neural pathways in vivo. PLoS One 9:e95932

    Article  CAS  Google Scholar 

  • Bolam JP, Pissadaki EK (2012) Living on the edge with too many mouths to feed: why dopamine neurons die. Mov Disord 27:1478–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter PJ, Samulski RJ (2000) Adeno-associated viral vectors as gene delivery vehicles. Int J Mol Med 6:17–27

    CAS  PubMed  Google Scholar 

  • Cearley CN, Wolfe JH (2006) Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9 and rh10 in the mouse brain. Mol Ther 13:528–537

    Article  CAS  PubMed  Google Scholar 

  • Chen H, McCarty DM, Bruce AT, Suzuki K (1999) Oligodendrocyte-specific gene expression in the mouse brain: use of a myelin-forming cell type-specific promoter in an adeno-associated virus. J Neurosci Res 55:504–513

    Article  CAS  PubMed  Google Scholar 

  • Christine CW, Starr PA, Larson PS, Eberling JL, Jagust WJ, Hawkins RA, VanBrocklin HF, Wright JF, Bankiewicz KS, Aminoff MJ (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73:1662–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dell Anno MT, Caiazzo M, Leo D, Dvoretskova E, Medrihan L, Colasante G, Gianelli S, Theka I, Russo G, Mus L, Pezzoli G, Gainetdinov RR, Benfenati F, Taverna S, Dityatev A, Broccoli V (2014) Remote control of induced dopaminergic neurons in parkinsonian rats. J Clin Invest 124:3215–3229

    Article  CAS  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  CAS  PubMed  Google Scholar 

  • Deverman BE, Pravdo PL, Simpson BP, Ravindra-Kumar S, Chan KY, Banerjee A, Wu W-L, Huber N, Pasca SP, Gradinary V (2016) Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 34:204–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberling JL, Jagust WJ, Christine CW, Starr P, Larson P, Bankiewicz KS, Aminoff MJ (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70:1980–1983

    Article  CAS  PubMed  Google Scholar 

  • Eldridge MA, Lerchner W, Saunders RC, Kaneko H, Krausz KW, Gonzalez FJ, Ji B, Higuchi M, Minamimoto T, Richmond BJ (2016) Chemogenetic disconnection of monkey orbitofrontal cortex and rhinal cortex reversibly disrupts reward value. Nat Neurosci 19:37–39

    Article  CAS  PubMed  Google Scholar 

  • Emborg ME, Carbon M, Holden JE, During MJ, Ma Y, Tang C, Moirano J, Fitzsimons H, Roitberg BZ, Tuccar E, Roberts A, Kaplitt MG, Eidelberg D (2007) Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab 27:501–509

    Article  CAS  PubMed  Google Scholar 

  • Eslamboli A, Georgievska B, Ridley RM, Baker HF, Muzyczka N, Burger C, Mandel RJ, Annett L, Kirik D (2005) Continous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci 25:769–777

    Article  CAS  PubMed  Google Scholar 

  • Eslamboli A, Romero-Ramos M, Burger C, Björklund T, Muzyczka N, Mandel RJ, Baker H, Ridley RM, Kirik D (2007) Long-term consequences of human alpha-synuclein overexpression in the primate ventral brain. Brain 130:799–815

    Article  PubMed  Google Scholar 

  • Farrell MS, Pei Y, Wan Y, Yadav PN, Daigle TL, Urban DJ, Lee HM, Sciaky N, Simmons A, Nonnerman RJ, Huang XP, Hufeisen SJ, Guettier JM, Moy SS, Wess J, Caron MG, Calakos N, Roth BL (2013) A Gαs DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology 38:854–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson SM, Phillips PE, Roth BL, Wess J, Neumaier JF (2013) Direct-pathway striatal neurons regulate the retention of decision-making strategies. J Neurosci 33:11668–11676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flotte TR, Carter BJ (1995) Adeno-associated virus vectors for gene therapy. Gene Ther 2:29–37

    CAS  PubMed  Google Scholar 

  • Forsayeth JR, Eberling JL, Sanftner LM, Zhen Z, Pivirotto P, Bringas J, Cunningham J, Bankiewicz KS (2006) A dose-ranging study of AAV-hAADC therapy in parkinsonian monkeys. Mol Ther 14:571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Epstein BE, Schaffer DV (2016) Genome engineering using adeno-associated virus: basic and clinical applications. Mol Ther 24:458–464

    Article  CAS  PubMed  Google Scholar 

  • Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380:252–255

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt GA, Cass WA, Hudson J, Henson M, Zhang Z, Ovadia A, Hoffer BJ, Gash DM (1999) GDNF improves dopaminergic function in the substantia nigra but not in the putamen of unilateral MPTP-lesioned rhesus monkeys. Brain Res 817:163–171

    Article  CAS  PubMed  Google Scholar 

  • Gerits A, Vancraeyenest P, Vreysen S, Laramée ME, Michiels A, Gijsbers R, Vanm der Haute C, Moons L, Debyser Z, Baekelandt V, Arckens L (2015) Serotype-dependent transduction efficiencies of recombinant adeno-associated viral vectors in monkey neocortes. Neurophotonics 2:031209

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595

    Article  CAS  PubMed  Google Scholar 

  • Gray S, Foti S, Schwartz J, Bachaboina L, Taylor-Blake B, Coleman J, Ehlers M, Zylka M, McCown T, Samulski R (2011) Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 22:1143–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grondin R, Zhang Z, Yi A, Cass WA, Maswood N, Andersen AH, Elsberry DD, Klein MC, Gerhardt GA, Gash DM (2002) Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 125:2191–2201

    Article  PubMed  Google Scholar 

  • Grondin R, Zhang Z, Ai Y, Ding F, Walton AA, Surgener SP, Gerdhardt GA, Gash DM (2008) Intraputamenal infusion of exogenous neurturin protein restores motor and dopaminergic function in the globus pallidus of MPTP-lesioned rhesus monkeys. Cell Transplant 17:373–381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guridi J, Herrero MT, Luquin R, Guillen J, Obeso JA (1994) Subthalamotomy improves MPTP-induced parkinsonism in monkeys. Stereotact Funct Neurosurg 62:98–102

    Article  CAS  PubMed  Google Scholar 

  • Guridi J, Herrero MT, Luquin MR, Guillén J, Ruberg M, Laguna J, Vila M, Javoy-Agid F, Agid Y, Hirsch E, Obeso JA (1996) Subthalamotomy in parkinsonian monkeys. Behavioral and biochemical analysis. Brain 119:1717–1727

    Article  PubMed  Google Scholar 

  • Herzog CD, Dass B, Holden JE, Stansell J 3rd, Gasmi M, Tuszynski MH, Bartus RT, Kordower JH (2007) Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov Disord 22:1124–1132

    Article  PubMed  Google Scholar 

  • Herzog CD, Dass B, Gasmi M, Bakay R, Stansell JE, Tuszynski M, Bankiewicz K, Chen EY, Chu Y, Bishop K, Kordower JH, Bartus RT (2008) Transgene expression, bioactivity, and safety of CERE-120 (AAV2-neurturin) following delivery in the monkey striatum. Mol Ther 16:1737–1744

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Koketsu D, Kato S, Kobayashi K, Nambu A, Takada M (2012) Immunotoxin-mediated tract targeting in the primate brain: selective elimination of the cortico-subthalamic “hyperdirect” pathway. PLoS One 7:e39149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iravani MM, Costa S, Jackson MJ, Tel BC, Cannizzaro C, Pearce RK, Jenner P (2001) GDNF reverses priming for dyskinesia in MPTP-treated, l-DOPA-primed common marmosets. Eur J Neurosci 13:597–608

    Article  CAS  PubMed  Google Scholar 

  • Jarraya B, Boulet S, Scott Ralph G, Jan C, Bonvento G, Azzouz M, Miskin JE, Shin M, Delsezcaux T, Drout X, Hérard A-S, Day DM, Brouillet E, Kingsman SM, Hantraye P, Mitrophanous KA, Mazarakis ND, Palfi S (2009) Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Trans Med 1:2ra4

    Article  Google Scholar 

  • Jing S, Yu Y, Fang M, Hu Z, Holst PL, Boone T, Delaney J, Schultz H, Zhou R, Fox GM (1997) GFRalpha-2 and GFRalpha-3 are two new receptors for ligands of the GDNF family. J Biol Chem 272:33111–33117

    Article  CAS  PubMed  Google Scholar 

  • Johnston JC, Eberling J, Pivirotto P, Hadzczek P, Federoff HJ, Forsayeth J, Bankiewicz KS (2009) Clinically relevant effects of convection-enhanced delivery of AAV2-GDNF on the dopaminergic nigrostriatal pathway in aged monkeys. Hum Gene Ther 20:497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagiava A, Sargiannidou I, Bashiardes S, Richter J, Schiza N, Christodoulou C, Gritti A, Kleopa KA (2014) Gene delivery targeted to oligodendrocytes using a lentiviral vector. J Gene Med 16:364–373

    Article  CAS  PubMed  Google Scholar 

  • Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA, Bland RJ, Young D, Strybing K, Eidelberg D, During MJ (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Kobayashi K, Inoue K, Kuramochi M, Okada T, Yaginuma H, Morimoto K, Shimada T, Takada M, Kobayashi K (2011a) A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum Gene Ther 22:197–206

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Kuramochi M, Takasumi K, Kobayashi K, Inoue K, Takahara D, Hitoshi S, Ikenaka K, Shimada T, Takada M, Kobayashi K (2011b) Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. Hum Gene Ther 22:1511–1523

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Kobayashi K, Kobayashi K (2013a) Dissecting circuit mechanisms by genetic manipulation of specific neural pathways. Rev Neurosci 24:1–8

    Article  PubMed  Google Scholar 

  • Kato S, Kobayashi K, Inoue K, Takada M, Kobayashi K (2013b) Vectors for highly efficient and neuron-specific retrograde gene transfer or gene therapy of neurological diseases, In: Martin DF and Haverhill MA (eds) Gene Therapy—Tools and Potential Applications, InTech, pp 387–398

  • Kato K, Kobayashi K, Kobayashi K (2014) Improved transduction efficiency of a lentiviral vector for neuron-specific retrograde gene transfer by optimizing the junction of fusion envelope glycoprotein. J Neurosci Methods 227:151–158

    Article  CAS  PubMed  Google Scholar 

  • Kells AP, Hadaczek P, Yin D, Bringas J, Varenika V, Forsayeth J, Bankiewicz KS (2009) Efficient gene therapy-based method for the delivery of therapeutics to primate cortex. Proc Natl Acad Sci USA 106:2407–2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kells AP, Eberling J, Su X, Pivirotto P, Bringas J, Hadaczek P, Narrow WC, Bowers WJ, Federoff HJ, Forsayeth J, Bankiewicz KS (2010) Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J Neurosci 30:9567–9577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly MJ, O'Keeffe GW, Sullivan AM (2015) Viral vector delivery of neurotrophic factors for Parkinson's disease therapy. Expert Rev Mol Med 17:e8

    Article  PubMed  CAS  Google Scholar 

  • Kim SR, Chen X, Oo TF, Kareva T, Yarygina O, Wang C, During M, Kholodilov N, Burke RE (2011) Dopaminergic pathway reconstruction by Akt/Rheb-induced axon rgeneration. Ann Neurol 70:110–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SR, Kareva T, Yargyna O, Kholodilov N, Burke RE (2012) AAV transduction of dopaminergic neurons with constitutively active Rheb protects from neurodegeneration and mediates axon regrowth. Mol Ther 20:275–286

    Article  CAS  PubMed  Google Scholar 

  • Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, Mandel RJ, Björklund A (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22:2780–2791

    CAS  PubMed  Google Scholar 

  • Klein C, Westenberger A (2003) Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2:a008888

    Google Scholar 

  • Klein RL, King MA, Hamby ME, Meyer EM (2002) Dopaminergic cell loss induced by human A30P alpha-synuclein gene transfer to the rat substantia nigra. Hum Gene Ther 13:605–612

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Morita S, Sawada H, Mizuguchi T, Yamada K, Nagatsu I, Fujita K, Kreitman RJ, Pastan I, Nagatsu T (1995) Immunotoxin-mediated conditional disruption of specific neurons in transgenic mice. Proc Natl Acad Sci USA 92:1132–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Déglon N, Aebischer P (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Herzog CD, Dass B, Bakay RA, Stansell J 3rd, Gasmi M, Bartus RT (2006) Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol 60:706–715

    Article  CAS  PubMed  Google Scholar 

  • Küger S, Kilic E, Bähr M (2003) Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 10:337–347

    Article  CAS  Google Scholar 

  • Lanciego JL, Luquin N, Obeso JA (2012) Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2:a009621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lang AE, Gill SS, Patel NK, Lozano A, Nutt JG, Penn R, Brooks DJ, Hotton G, Moro E, Heywood P, Brodsky MA, Burchiel K, Kelly P, Dalvi A, Scott B, Stacy M, Turner D, Wooten VG, Elias WJ, Laws ER, Dhawan V, Stoessl AJ, Matcham J, Coffey RJ, Traub M (2006) Randomized controlled trial of intraputaminal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59:459–466

    Article  CAS  PubMed  Google Scholar 

  • Lawlor PA, Bland RJ, Mouravlev A, Young D, During MJ (2009) Efficient gene delivery and selective transduction of glial cells in the mammalian brain by AAV serotypes isolated from nonhuman primates. Mol Ther 17:1692–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Messing A, Su M, Brenner M (2008) GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56:481–493

    Article  PubMed  Google Scholar 

  • Li H, Chen G (2016) In vivo reprogramming for CNS repair: regenerating neurons from endogenous glial cells. Neuron 91:728–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linterman KS, Palmer DN, Kay GW, Barry LA, Mitchell NL, McFarlane RG, Black MA, Sands MS, Hughes SM (2011) Lentiviral-mediated gene transfer to the sheep brain: implications for gene therapy in batten disease. Hum Gene Ther 22:1011–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Chen M, Mi N, Yang W, Li X, Wang P, Yin N, Li Y, Yue F, Chan P, Yu S (2015) Increased oligomerization and phosphorylation of α-synuclein are associated with decreased activity of glucocerebrosidase and protein phosphatase 2A in aging monkey brains. Neurobiol Aging 36:2649–2659

    Article  CAS  PubMed  Google Scholar 

  • López-Huerta VG, Nakano Y, Bausenwein J, Jaidar O, Lazarus M, Cherassse Y, Garcia-Munoz M, Arbuthnott G (2016) The neostriatum: two entities, one structure? Brain Struct Funct 221:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Marks WJ Jr, Ostrem JL, Verhagen L, Starr PA, Larson PS, Bakay RA, Taylor R, Cahn-Weiner DA, Stoessl AJ, Olanow CW, Bartus RT (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 7:400–408

    Article  PubMed  Google Scholar 

  • Marks WJ Jr, Bartus RT, Siffert J, Davis CS, Lozano A, Boulis N, Vitek J, Stacy M, Turner D, Verhagen L, Bakay R, Watts R, Guthrie B, Jankovic J, Simpson R, Tagliati M, Alterman R, Stern M, Baltuch G, Starr PA, Larson PS, Ostrem JL, Nutt J, Kieburtz K, Kordower JH, Olanow CW (2010) Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomized, controlled trial. Lancet Neurol 9:1164–1172

    Article  CAS  PubMed  Google Scholar 

  • Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, Kaneko T (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29:444–453

    Article  CAS  PubMed  Google Scholar 

  • McIver SR, Lee CS, Lee JM, Green SH, Sands MS, Snider BJ, Goldberg MP (2005) Lentiviral transduction of murine oligodendrocytes in vivo. J Neurosci Res 82:397–403

    Article  CAS  PubMed  Google Scholar 

  • Michaelides M, Anderson SAR, Ananth M, Smirnov D, Thanos PK, Neumaier JF, Wang G-J, Volkow ND, Hurd YL (2013) Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks. J Clin Invest 123:5342–5350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migdalska-Richards A, Schapira AHV (2016) The relationship between glucocerebrosidase mutations and Parkinson disease. J Neurochem 139(Suppl 1):77–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittermeyer G, Christine CW, Rosenbuth KH, Baker SL, Starr P, Larson O, Kaplan PL, Forsayeth J, Aminoff MJ, Bankiewicz KS (2012) Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 23:377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muramatsu S-I, Fujimoto K-I, Kato S, Mizukami H, Asari S, Ikeguchi K, Kawakami T, Urabe M, Kume A, Sato T, Watanabe E, Ozawa K, Nakano I (2010) A phase I study of aromatic l-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 9:1731–1735

    Article  CAS  Google Scholar 

  • Murlidharan G, Samulski RJ, Asokan A (2014) Biology of adeno-associated viral vectors in the central nervous system. Front Mol Neurosci 7:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagatsu T, Sawada M (2007) Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects. J Neural Transm Suppl 72:113–120

    Article  CAS  Google Scholar 

  • Nassi JJ, Cepko CL, Born RT, Beier KT (2015) Neuroanatomy goes viral! Front Neuroanat 9:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu W, Zang T, Smith DK, Yia Vue T, Zou Y, Bachoo R, Johnson JE, Zhang C-L (2015) SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Rep 4:780–794

    Article  CAS  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 23:S8–S19

    Article  CAS  PubMed  Google Scholar 

  • Oguchi M, Okajima M, Tanaka S, Koizumi M, Kikusui T, Ichihara N, Kato S, Kobayashi K, Sakagami M (2015) Double virus vector infection to the prefrontal network of the macaque brain. PLoS One 10:e0132825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ojala DS, Amara DP, Schaffer DV (2015) Adeno-associated virus vectors and neurological gene therapy. Neuroscientist 21:84–98

    Article  PubMed  CAS  Google Scholar 

  • Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, Watts C, Miskin J, Kelleher M, Deeley S, Iwamuro H, Lefaucher JP, Thiriez C, Fenelon G, Lucas C, Brugières P, Gabriel I, Abhay K, Drouot X, Tani N, Kas A, Ghaleh B, Le Corvoisier P, Dolphin P, Breen DP, Mason S, Guzman NV, Mazarakis ND, Radcliffe PA, Harrop R, Kingsman SM, Rascol O, Naylor S, Barker RA, Hantraye P, Remy P, Cesara P, Mirtophanous KA (2014) Long-term safety and tolerability of prosavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383:1138–1146

    Article  CAS  PubMed  Google Scholar 

  • Papadakis E, Nicklin S, Baker A, White S (2004) Promoters and control elements: designing expression cassettes for gene therapy. CGT 4:89–113

    Article  CAS  Google Scholar 

  • Pignataro D, Sucunza D, Vanrell L, Lopez-Franco E, Dopeso-Reyes IG, Vales A, Hommel M, Rico AJ, Lanciego JL, Gonzalez-Aseguinolaza G (2017) Adeno-associated viral vectors for cell-specific delivery of therapeutic genes in the central nervous system. Front Neuroanat 11:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quartu M, Serra MP, Boi M, Ferreti MT, Lai ML, Del Fiacco M (2007) Tissue distribution of Ret, GFRalpha-1, GFRalpha-2 and GFRalpha-3 receptors in the human brainstem at fetal, neonatal and adult age. Brain Res 1173:36–52

    Article  CAS  PubMed  Google Scholar 

  • Rezvani M, Espanol-Suner R, Malato Y, Dumont L, Grimm AA, Kienle E, Bindman JG, Wiedtke E, Hsu BY, Naqvi SJ, Schwabe RF, Corvera CU, Grimm D, Willenbring H (2016) In vivo hepatic reprogramming of myofibroblasts with AAV vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell 18:809–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson RM, Kells AP, Rosenbluth KH, Salegio EA, Fiandanca MS, Larson PS, Starr PA, Martin AJ, Lonser RR, Federoff HJ, Forsayeth JR, Bankiewicz KS (2011) Interventional MRI-guided putaminal delivery of AAV2-GDNF for a planned clinical trial in Parkinson’s disease. Mol Ther 19:1048–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha EM, Smith GA, Park E, Cao H, Brown E, Hayes MA, Beagan J, McLean JR, Izen SC, Perez-Torres E, Hallet PJ, Isacson O (2015) Glucocerebrosidase gene therapy prevents alpha-synucleinopathy of midbrain dopamine neurons. Neurobiol Dis 82:495–503

    Article  CAS  PubMed  Google Scholar 

  • Roth BL (2016) DREADDs for neuroscientists. Neuron 89:683–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • San Sebastian W, Richardson RM, Kells AP, Lamarre C, Bringas J, Pivirotto P, Salegio EA, Dearmond SJ, Forsayeth J, Bankiewicz KS (2012) Safety and tolerability of magnetic resonance imaging-guided convection-enhanced delivery of AAV2-hAADC with a novel delivery platform in nonhuman primate striatum. Hum Gene Ther 23:210–217

    Article  CAS  PubMed  Google Scholar 

  • Schoch S, Cibelli G, Thiel G (1996) Neuron-specific gene expression of synapsin I. J Biol Chem 271:3317–3323

    Article  CAS  PubMed  Google Scholar 

  • Scofield MD, Boger HA, Smith RJ, Li H, Haydon PG, Kalivas PW (2015) Gq-DREADD selectively initiates glial glutamate release and inhibits cue-induced cocaine seeking. Biol Psychiatry 78:441–451

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signaling controls tumour cell growth. Nature 441:424–430

    Article  CAS  PubMed  Google Scholar 

  • Sidransky E (2005) Gaucher disease and parkinsonism. Mol Genet Metab 84:302–304

    Article  CAS  PubMed  Google Scholar 

  • Sidransky E, Lopez G (2012) The link between the GBA gene and parkinsonism. Lancet Neurol 11:986–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R, Young B (2005) Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg 102:216–222

    Article  CAS  PubMed  Google Scholar 

  • Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Basset-Duby R, Olson EN (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay HC, Yang D, Reetz J, Brandes S, Dai Z, Putzer BM, Araúzo-Bravo MJ, Steinemann D, Luedde T, Schwabe RF, Manns MP, Schöler HR, Schambach A, Cantz T, Ott M, Sharma AD (2016) Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell 18:797–808

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Niu W, Liu M-L, Zou Y, Zhang C-L (2014) In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun 5:1–15

    Google Scholar 

  • Thiel G, Greengard P, Südhof TC (1991) Characterization of tissue-specific transcription by the human synapsin I gene promoter. Proc Natl Acad Sci USA 88:3431–3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson LH, Grealish S, Kirik D, Bjöklund A (2009) Reconstruction of the nigrostriatal dopamine pathway in the adult mouse brain. Eur J Neurosci 30:625–638

    Article  PubMed  Google Scholar 

  • Torper O, Ottosson DR, Pereira M, Lau S, Cardoso T, Grealish S, Parmar M (2015) In vivo reprogramming of striatal NG2 glia into functional neurons that integrate in the local host circuitry. Cell Reports 12:474–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towne C, Schneider BL, Kieran D, Redmond DE Jr, Aebischer P (2010) Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Ther 17:141–146

    Article  CAS  PubMed  Google Scholar 

  • Towne C, Setola V, Schneider BL, Aebischer P (2011) Neuroprotection by gene therapy targeting mutant SOD1 in individual pools of motor neurons does not translate into therapeutic benefit in fALS mice. Mol Ther 19:274–283

    Article  CAS  PubMed  Google Scholar 

  • Urban DJ, Roth BL (2014) DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 55:399–417

    Article  PubMed  CAS  Google Scholar 

  • Vazey EM, Aston-Jones G (2014) Designer receptor manipulations reveal a role of the locus ceruleus noradrenergic system in isoflurane general anesthesia. Proc Natl Acad Sci USA 111:3859–3864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volpicelli-Daley LA, Kirik D, Stoyka LE, Standaert DG, Harms AS (2016) How can r-AAV-α-synuclein and the fibril α-synuclein models advance our understanding of Parkinson’s disease? J Neurochem 139(Suppl 1):131–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Jonquieres G, Mersmann N, Klugmann CB, Harasta AE, Lutz B, Teahan O, Housley GD, Frohlich D, Kramer-Albers EM, Klugmann M (2013) Glial promoter selectivity following AAV-delivery to the immature brain. PLoS One 8:e65646

    Article  CAS  Google Scholar 

  • Walker DG, Beach TG, Xu R, Lile J, Beck KD, McGeer EG, McGeer PL (1998) Expression of the proto-oncogen Ret, a component of the GDNF receptor complex, persist in human substantia nigra neurons in Parkinson’s disease. Brain Res 792:207–217

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tien LT, Lapchak PA, Hoffer BJ (1996) GDNF triggers fiber outgrowth of fetal ventral mesencephalic grafts from substantia nigra to striatum in 6-OHDA-lesioned rats. Cell Tissue Res 286:225–233

    Article  CAS  PubMed  Google Scholar 

  • Watakabe A, Ohtsuka M, Kinoshita M, Takaji M, Isa K, Mizukami H, Ozawa K, Isa T, Yamamori T (2015) Comparative analyses of adeno-associated ciral vectors serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci Res 93:144–157

    Article  PubMed  Google Scholar 

  • Wilby MJ, Sinclair SR, Muir EM, Zietlow R, Adcock KH, Horellou P, Rogers JH, Dunnett SB, Fawcett JW (1999) A glial cell line-derived neurotrophic factor-secreting clone of the Schwann cell line SCTM41 enhances survival and fiber outgrowth from embryonic nigral neurons grafted to the striatum and to the lesioned substantia nigra. J Neurosci 19:2301–2312

    CAS  PubMed  Google Scholar 

  • Zhou Q, Brown J, Kanarek A, Rajogopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the European Research Council (ERC Advanced Grant number 340527 ReproPARK), Pathfinder CoEN grant (Ref: Phase II Call), Spanish Ministry of Economy and Competitiveness (Grant number BFU2012-27907), CiberNed (2014/01) and Fundació La Marató TV3 (Grant number 20141331). Salary for Diego Pignataro is partially supported by a Grant from Jon Zarandona. The plasmids, maps, and sequences of hRheb-S16H are a generous gift from Drs. R.E. Burke and N. Kholodilov from the Department of Neurology, Columbia University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Lanciego.

Additional information

D. Pignataro and D. Sucunza contributed equally to the conducted work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

702_2017_1681_MOESM1_ESM.tif

Supplementary Figure 1: Intranigral delivery of hRheb(S16H)-AAV5. (A) The left substantia nigra pars compacta was injected with hRheb(S16H)-AAV5 (arrowheads), whereas a GFP-coding AAV5 was delivered in the contralateral side for control purposes (arrow). (A’-A’’) Insets taken at higher magnification from the AAV-injected areas, as seen with the immunohistochemical detection of TH. (B-B’’’) Illustrative examples of FLAG-positive stained neurons in lateral territories of the left substantia nigra. (C-C’’) Immunohistochemical detection of GFP. GFP-positive neurons were only found in the right substantia nigra. (D-D’’): FLAG-positive axons travelling through the left medial forebrain bundle. (TIFF 13005 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pignataro, D., Sucunza, D., Rico, A.J. et al. Gene therapy approaches in the non-human primate model of Parkinson’s disease. J Neural Transm 125, 575–589 (2018). https://doi.org/10.1007/s00702-017-1681-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1681-3

Keywords

Navigation