Journal of Neural Transmission

, Volume 125, Issue 3, pp 575–589 | Cite as

Gene therapy approaches in the non-human primate model of Parkinson’s disease

  • D. Pignataro
  • D. Sucunza
  • A. J. Rico
  • I. G. Dopeso-Reyes
  • E. Roda
  • A. I. Rodríguez-Perez
  • J. L. Labandeira-Garcia
  • V. Broccoli
  • S. Kato
  • K. Kobayashi
  • José L. Lanciego
Neurology and Preclinical Neurological Studies - Review Article


The field of gene therapy has recently witnessed a number of major conceptual changes. Besides the traditional thinking that comprises the use of viral vectors for the delivery of a given therapeutic gene, a number of original approaches have been recently envisaged, focused on using vectors carrying genes to further modify basal ganglia circuits of interest. It is expected that these approaches will ultimately induce a therapeutic potential being sustained by gene-induced changes in brain circuits. Among others, at present, it is technically feasible to use viral vectors to (1) achieve a controlled release of neurotrophic factors, (2) conduct either a transient or permanent silencing of any given basal ganglia circuit of interest, (3) perform an in vivo cellular reprogramming by promoting the conversion of resident cells into dopaminergic-like neurons, and (4) improving levodopa efficacy over time by targeting aromatic l-amino acid decarboxylase. Furthermore, extensive research efforts based on viral vectors are currently ongoing in an attempt to better replicate the dopaminergic neurodegeneration phenomena inherent to the progressive intraneuronal aggregation of alpha-synuclein. Finally, a number of incoming strategies will soon emerge over the horizon, these being sustained by the underlying goal of promoting alpha-synuclein clearance, such as, for instance, gene therapy initiatives based on increasing the activity of glucocerebrosidase. To provide adequate proof-of-concept on safety and efficacy and to push forward true translational initiatives based on these different types of gene therapies before entering into clinical trials, the use of non-human primate models undoubtedly plays an instrumental role.


Basal ganglia Dopamine Dyskinesia Viral vectors Neurodegeneration Macaques 



Supported by the European Research Council (ERC Advanced Grant number 340527 ReproPARK), Pathfinder CoEN grant (Ref: Phase II Call), Spanish Ministry of Economy and Competitiveness (Grant number BFU2012-27907), CiberNed (2014/01) and Fundació La Marató TV3 (Grant number 20141331). Salary for Diego Pignataro is partially supported by a Grant from Jon Zarandona. The plasmids, maps, and sequences of hRheb-S16H are a generous gift from Drs. R.E. Burke and N. Kholodilov from the Department of Neurology, Columbia University.

Supplementary material

702_2017_1681_MOESM1_ESM.tif (12.7 mb)
Supplementary Figure 1: Intranigral delivery of hRheb(S16H)-AAV5. (A) The left substantia nigra pars compacta was injected with hRheb(S16H)-AAV5 (arrowheads), whereas a GFP-coding AAV5 was delivered in the contralateral side for control purposes (arrow). (A’-A’’) Insets taken at higher magnification from the AAV-injected areas, as seen with the immunohistochemical detection of TH. (B-B’’’) Illustrative examples of FLAG-positive stained neurons in lateral territories of the left substantia nigra. (C-C’’) Immunohistochemical detection of GFP. GFP-positive neurons were only found in the right substantia nigra. (D-D’’): FLAG-positive axons travelling through the left medial forebrain bundle. (TIFF 13005 kb)


  1. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375PubMedCrossRefGoogle Scholar
  2. Allen Reish HE, Standaert DG (2015) Role of alpha-synuclein in inducing innate and adaptative immunity in Parkinson disease. J Parkinsons Dis 5:1–19PubMedPubMedCentralGoogle Scholar
  3. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 104:5163–5168PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aschauer DF, Kreuz S, Rumpel S (2013) Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8:e76310PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ayuso E, Mingozzi F, Bosch F (2010) Production, purification and characterization of adeno-associated vectors. Curr Gene Ther 10:423–436PubMedCrossRefGoogle Scholar
  6. Bankiewicz KS, Forsayeth J, Eberling JL, Sanchez-Pernaute R, Pivirotto P, Bringas J, Herscovitch P, Carson RE, Eckelman W, Reuter B, Cunningham J (2006) Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 14:564–570PubMedCrossRefGoogle Scholar
  7. Bartlett JS, Samulski RJ, McCown TJ (1998) Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther 9:1181–1186PubMedCrossRefGoogle Scholar
  8. Bartlett JS, Kleinschmidt J, Boucher RC, Samulski RJ (1999) Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab’y)2 antibody. Nat Biotechnol 17:181–186PubMedCrossRefGoogle Scholar
  9. Bartus RT, Herzog CD, Chu Y, Wilson A, Brown L, Siffert J, Johnson EM Jr, Olanow CW, Mufson EJ, Kordower JH (2011) Bioactivity of AAV2-Nurturin gene therapy (CERE-120): differences between Parkinson’s disease and nonhuman primate models. Mov Disord 26:27–36PubMedCrossRefGoogle Scholar
  10. Bartus RT, Kordower JH, Johnson EM Jr, Brown L, Kruegel BR, Chu Y, Baumann TL, Lang AE, Olanow CW, Herzog CD (2015) Post-mortem assessment of the short and long-term effects of the trophic factor neurturin in patients with α-synucleinopathies. Neurobiol Dis 78:162–171PubMedCrossRefGoogle Scholar
  11. Bellochio L, Ruiz-Calvo A, Chiarlone A, Cabanas M, Resel E, Cazalets J-R, Blázquez C, Cho YH, Galve-Roperth I, Guzman M (2016) Sustained Gq-protein signaling disrupts striatal circuits via JNK. J Neurosci 36:10611–10624CrossRefGoogle Scholar
  12. Besnard F, Brenner M, Nakatani Y, Chao R, Purohit H, Freese E (1991) Multiple interacting sites regulate astrocyte-specific transcription of the human gene for glial fibrillary acidic protein. J Biol Chem 266:18877–18883PubMedGoogle Scholar
  13. Blanz J, Saftig P (2016) Parkinson’s disease: acid-glucocerebrosidase activity and alpha-synuclein clearance. J Neurochem 139(Suppl 1):198–215PubMedCrossRefGoogle Scholar
  14. Boender AJ, de Jong JW, Boekhoudt L, Luijendijk MC, van der Plasse G, Adan RA (2014) Combined use of the canine adenovirus-2 and DREADD-technology to activate specific neural pathways in vivo. PLoS One 9:e95932CrossRefGoogle Scholar
  15. Bolam JP, Pissadaki EK (2012) Living on the edge with too many mouths to feed: why dopamine neurons die. Mov Disord 27:1478–1483PubMedPubMedCentralCrossRefGoogle Scholar
  16. Carter PJ, Samulski RJ (2000) Adeno-associated viral vectors as gene delivery vehicles. Int J Mol Med 6:17–27PubMedGoogle Scholar
  17. Cearley CN, Wolfe JH (2006) Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9 and rh10 in the mouse brain. Mol Ther 13:528–537PubMedCrossRefGoogle Scholar
  18. Chen H, McCarty DM, Bruce AT, Suzuki K (1999) Oligodendrocyte-specific gene expression in the mouse brain: use of a myelin-forming cell type-specific promoter in an adeno-associated virus. J Neurosci Res 55:504–513PubMedCrossRefGoogle Scholar
  19. Christine CW, Starr PA, Larson PS, Eberling JL, Jagust WJ, Hawkins RA, VanBrocklin HF, Wright JF, Bankiewicz KS, Aminoff MJ (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73:1662–1669PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dell Anno MT, Caiazzo M, Leo D, Dvoretskova E, Medrihan L, Colasante G, Gianelli S, Theka I, Russo G, Mus L, Pezzoli G, Gainetdinov RR, Benfenati F, Taverna S, Dityatev A, Broccoli V (2014) Remote control of induced dopaminergic neurons in parkinsonian rats. J Clin Invest 124:3215–3229CrossRefGoogle Scholar
  21. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285PubMedCrossRefGoogle Scholar
  22. Deverman BE, Pravdo PL, Simpson BP, Ravindra-Kumar S, Chan KY, Banerjee A, Wu W-L, Huber N, Pasca SP, Gradinary V (2016) Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 34:204–211PubMedPubMedCentralCrossRefGoogle Scholar
  23. Eberling JL, Jagust WJ, Christine CW, Starr P, Larson P, Bankiewicz KS, Aminoff MJ (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70:1980–1983PubMedCrossRefGoogle Scholar
  24. Eldridge MA, Lerchner W, Saunders RC, Kaneko H, Krausz KW, Gonzalez FJ, Ji B, Higuchi M, Minamimoto T, Richmond BJ (2016) Chemogenetic disconnection of monkey orbitofrontal cortex and rhinal cortex reversibly disrupts reward value. Nat Neurosci 19:37–39PubMedCrossRefGoogle Scholar
  25. Emborg ME, Carbon M, Holden JE, During MJ, Ma Y, Tang C, Moirano J, Fitzsimons H, Roitberg BZ, Tuccar E, Roberts A, Kaplitt MG, Eidelberg D (2007) Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab 27:501–509PubMedCrossRefGoogle Scholar
  26. Eslamboli A, Georgievska B, Ridley RM, Baker HF, Muzyczka N, Burger C, Mandel RJ, Annett L, Kirik D (2005) Continous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci 25:769–777PubMedCrossRefGoogle Scholar
  27. Eslamboli A, Romero-Ramos M, Burger C, Björklund T, Muzyczka N, Mandel RJ, Baker H, Ridley RM, Kirik D (2007) Long-term consequences of human alpha-synuclein overexpression in the primate ventral brain. Brain 130:799–815PubMedCrossRefGoogle Scholar
  28. Farrell MS, Pei Y, Wan Y, Yadav PN, Daigle TL, Urban DJ, Lee HM, Sciaky N, Simmons A, Nonnerman RJ, Huang XP, Hufeisen SJ, Guettier JM, Moy SS, Wess J, Caron MG, Calakos N, Roth BL (2013) A Gαs DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology 38:854–862PubMedPubMedCentralCrossRefGoogle Scholar
  29. Ferguson SM, Phillips PE, Roth BL, Wess J, Neumaier JF (2013) Direct-pathway striatal neurons regulate the retention of decision-making strategies. J Neurosci 33:11668–11676PubMedPubMedCentralCrossRefGoogle Scholar
  30. Flotte TR, Carter BJ (1995) Adeno-associated virus vectors for gene therapy. Gene Ther 2:29–37PubMedGoogle Scholar
  31. Forsayeth JR, Eberling JL, Sanftner LM, Zhen Z, Pivirotto P, Bringas J, Cunningham J, Bankiewicz KS (2006) A dose-ranging study of AAV-hAADC therapy in parkinsonian monkeys. Mol Ther 14:571–577PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gaj T, Epstein BE, Schaffer DV (2016) Genome engineering using adeno-associated virus: basic and clinical applications. Mol Ther 24:458–464PubMedCrossRefGoogle Scholar
  33. Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380:252–255PubMedCrossRefGoogle Scholar
  34. Gerhardt GA, Cass WA, Hudson J, Henson M, Zhang Z, Ovadia A, Hoffer BJ, Gash DM (1999) GDNF improves dopaminergic function in the substantia nigra but not in the putamen of unilateral MPTP-lesioned rhesus monkeys. Brain Res 817:163–171PubMedCrossRefGoogle Scholar
  35. Gerits A, Vancraeyenest P, Vreysen S, Laramée ME, Michiels A, Gijsbers R, Vanm der Haute C, Moons L, Debyser Z, Baekelandt V, Arckens L (2015) Serotype-dependent transduction efficiencies of recombinant adeno-associated viral vectors in monkey neocortes. Neurophotonics 2:031209PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595PubMedCrossRefGoogle Scholar
  37. Gray S, Foti S, Schwartz J, Bachaboina L, Taylor-Blake B, Coleman J, Ehlers M, Zylka M, McCown T, Samulski R (2011) Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 22:1143–1153PubMedPubMedCentralCrossRefGoogle Scholar
  38. Grondin R, Zhang Z, Yi A, Cass WA, Maswood N, Andersen AH, Elsberry DD, Klein MC, Gerhardt GA, Gash DM (2002) Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 125:2191–2201PubMedCrossRefGoogle Scholar
  39. Grondin R, Zhang Z, Ai Y, Ding F, Walton AA, Surgener SP, Gerdhardt GA, Gash DM (2008) Intraputamenal infusion of exogenous neurturin protein restores motor and dopaminergic function in the globus pallidus of MPTP-lesioned rhesus monkeys. Cell Transplant 17:373–381PubMedPubMedCentralGoogle Scholar
  40. Guridi J, Herrero MT, Luquin R, Guillen J, Obeso JA (1994) Subthalamotomy improves MPTP-induced parkinsonism in monkeys. Stereotact Funct Neurosurg 62:98–102PubMedCrossRefGoogle Scholar
  41. Guridi J, Herrero MT, Luquin MR, Guillén J, Ruberg M, Laguna J, Vila M, Javoy-Agid F, Agid Y, Hirsch E, Obeso JA (1996) Subthalamotomy in parkinsonian monkeys. Behavioral and biochemical analysis. Brain 119:1717–1727PubMedCrossRefGoogle Scholar
  42. Herzog CD, Dass B, Holden JE, Stansell J 3rd, Gasmi M, Tuszynski MH, Bartus RT, Kordower JH (2007) Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov Disord 22:1124–1132PubMedCrossRefGoogle Scholar
  43. Herzog CD, Dass B, Gasmi M, Bakay R, Stansell JE, Tuszynski M, Bankiewicz K, Chen EY, Chu Y, Bishop K, Kordower JH, Bartus RT (2008) Transgene expression, bioactivity, and safety of CERE-120 (AAV2-neurturin) following delivery in the monkey striatum. Mol Ther 16:1737–1744PubMedCrossRefGoogle Scholar
  44. Inoue K, Koketsu D, Kato S, Kobayashi K, Nambu A, Takada M (2012) Immunotoxin-mediated tract targeting in the primate brain: selective elimination of the cortico-subthalamic “hyperdirect” pathway. PLoS One 7:e39149PubMedPubMedCentralCrossRefGoogle Scholar
  45. Iravani MM, Costa S, Jackson MJ, Tel BC, Cannizzaro C, Pearce RK, Jenner P (2001) GDNF reverses priming for dyskinesia in MPTP-treated, l-DOPA-primed common marmosets. Eur J Neurosci 13:597–608PubMedCrossRefGoogle Scholar
  46. Jarraya B, Boulet S, Scott Ralph G, Jan C, Bonvento G, Azzouz M, Miskin JE, Shin M, Delsezcaux T, Drout X, Hérard A-S, Day DM, Brouillet E, Kingsman SM, Hantraye P, Mitrophanous KA, Mazarakis ND, Palfi S (2009) Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Trans Med 1:2ra4CrossRefGoogle Scholar
  47. Jing S, Yu Y, Fang M, Hu Z, Holst PL, Boone T, Delaney J, Schultz H, Zhou R, Fox GM (1997) GFRalpha-2 and GFRalpha-3 are two new receptors for ligands of the GDNF family. J Biol Chem 272:33111–33117PubMedCrossRefGoogle Scholar
  48. Johnston JC, Eberling J, Pivirotto P, Hadzczek P, Federoff HJ, Forsayeth J, Bankiewicz KS (2009) Clinically relevant effects of convection-enhanced delivery of AAV2-GDNF on the dopaminergic nigrostriatal pathway in aged monkeys. Hum Gene Ther 20:497–510PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kagiava A, Sargiannidou I, Bashiardes S, Richter J, Schiza N, Christodoulou C, Gritti A, Kleopa KA (2014) Gene delivery targeted to oligodendrocytes using a lentiviral vector. J Gene Med 16:364–373PubMedCrossRefGoogle Scholar
  50. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA, Bland RJ, Young D, Strybing K, Eidelberg D, During MJ (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105PubMedCrossRefGoogle Scholar
  51. Kato S, Kobayashi K, Inoue K, Kuramochi M, Okada T, Yaginuma H, Morimoto K, Shimada T, Takada M, Kobayashi K (2011a) A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum Gene Ther 22:197–206PubMedCrossRefGoogle Scholar
  52. Kato S, Kuramochi M, Takasumi K, Kobayashi K, Inoue K, Takahara D, Hitoshi S, Ikenaka K, Shimada T, Takada M, Kobayashi K (2011b) Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. Hum Gene Ther 22:1511–1523PubMedCrossRefGoogle Scholar
  53. Kato S, Kobayashi K, Kobayashi K (2013a) Dissecting circuit mechanisms by genetic manipulation of specific neural pathways. Rev Neurosci 24:1–8PubMedCrossRefGoogle Scholar
  54. Kato S, Kobayashi K, Inoue K, Takada M, Kobayashi K (2013b) Vectors for highly efficient and neuron-specific retrograde gene transfer or gene therapy of neurological diseases, In: Martin DF and Haverhill MA (eds) Gene Therapy—Tools and Potential Applications, InTech, pp 387–398Google Scholar
  55. Kato K, Kobayashi K, Kobayashi K (2014) Improved transduction efficiency of a lentiviral vector for neuron-specific retrograde gene transfer by optimizing the junction of fusion envelope glycoprotein. J Neurosci Methods 227:151–158PubMedCrossRefGoogle Scholar
  56. Kells AP, Hadaczek P, Yin D, Bringas J, Varenika V, Forsayeth J, Bankiewicz KS (2009) Efficient gene therapy-based method for the delivery of therapeutics to primate cortex. Proc Natl Acad Sci USA 106:2407–2411PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kells AP, Eberling J, Su X, Pivirotto P, Bringas J, Hadaczek P, Narrow WC, Bowers WJ, Federoff HJ, Forsayeth J, Bankiewicz KS (2010) Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J Neurosci 30:9567–9577PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kelly MJ, O'Keeffe GW, Sullivan AM (2015) Viral vector delivery of neurotrophic factors for Parkinson's disease therapy. Expert Rev Mol Med 17:e8PubMedCrossRefGoogle Scholar
  59. Kim SR, Chen X, Oo TF, Kareva T, Yarygina O, Wang C, During M, Kholodilov N, Burke RE (2011) Dopaminergic pathway reconstruction by Akt/Rheb-induced axon rgeneration. Ann Neurol 70:110–120PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kim SR, Kareva T, Yargyna O, Kholodilov N, Burke RE (2012) AAV transduction of dopaminergic neurons with constitutively active Rheb protects from neurodegeneration and mediates axon regrowth. Mol Ther 20:275–286PubMedCrossRefGoogle Scholar
  61. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, Mandel RJ, Björklund A (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22:2780–2791PubMedGoogle Scholar
  62. Klein C, Westenberger A (2003) Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2:a008888Google Scholar
  63. Klein RL, King MA, Hamby ME, Meyer EM (2002) Dopaminergic cell loss induced by human A30P alpha-synuclein gene transfer to the rat substantia nigra. Hum Gene Ther 13:605–612PubMedCrossRefGoogle Scholar
  64. Kobayashi K, Morita S, Sawada H, Mizuguchi T, Yamada K, Nagatsu I, Fujita K, Kreitman RJ, Pastan I, Nagatsu T (1995) Immunotoxin-mediated conditional disruption of specific neurons in transgenic mice. Proc Natl Acad Sci USA 92:1132–1136PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Déglon N, Aebischer P (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773PubMedCrossRefGoogle Scholar
  66. Kordower JH, Herzog CD, Dass B, Bakay RA, Stansell J 3rd, Gasmi M, Bartus RT (2006) Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol 60:706–715PubMedCrossRefGoogle Scholar
  67. Küger S, Kilic E, Bähr M (2003) Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 10:337–347CrossRefGoogle Scholar
  68. Lanciego JL, Luquin N, Obeso JA (2012) Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2:a009621PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lang AE, Gill SS, Patel NK, Lozano A, Nutt JG, Penn R, Brooks DJ, Hotton G, Moro E, Heywood P, Brodsky MA, Burchiel K, Kelly P, Dalvi A, Scott B, Stacy M, Turner D, Wooten VG, Elias WJ, Laws ER, Dhawan V, Stoessl AJ, Matcham J, Coffey RJ, Traub M (2006) Randomized controlled trial of intraputaminal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59:459–466PubMedCrossRefGoogle Scholar
  70. Lawlor PA, Bland RJ, Mouravlev A, Young D, During MJ (2009) Efficient gene delivery and selective transduction of glial cells in the mammalian brain by AAV serotypes isolated from nonhuman primates. Mol Ther 17:1692–1702PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lee Y, Messing A, Su M, Brenner M (2008) GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56:481–493PubMedCrossRefGoogle Scholar
  72. Li H, Chen G (2016) In vivo reprogramming for CNS repair: regenerating neurons from endogenous glial cells. Neuron 91:728–738PubMedPubMedCentralCrossRefGoogle Scholar
  73. Linterman KS, Palmer DN, Kay GW, Barry LA, Mitchell NL, McFarlane RG, Black MA, Sands MS, Hughes SM (2011) Lentiviral-mediated gene transfer to the sheep brain: implications for gene therapy in batten disease. Hum Gene Ther 22:1011–1020PubMedPubMedCentralCrossRefGoogle Scholar
  74. Liu G, Chen M, Mi N, Yang W, Li X, Wang P, Yin N, Li Y, Yue F, Chan P, Yu S (2015) Increased oligomerization and phosphorylation of α-synuclein are associated with decreased activity of glucocerebrosidase and protein phosphatase 2A in aging monkey brains. Neurobiol Aging 36:2649–2659PubMedCrossRefGoogle Scholar
  75. López-Huerta VG, Nakano Y, Bausenwein J, Jaidar O, Lazarus M, Cherassse Y, Garcia-Munoz M, Arbuthnott G (2016) The neostriatum: two entities, one structure? Brain Struct Funct 221:1737–1749PubMedCrossRefGoogle Scholar
  76. Marks WJ Jr, Ostrem JL, Verhagen L, Starr PA, Larson PS, Bakay RA, Taylor R, Cahn-Weiner DA, Stoessl AJ, Olanow CW, Bartus RT (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 7:400–408PubMedCrossRefGoogle Scholar
  77. Marks WJ Jr, Bartus RT, Siffert J, Davis CS, Lozano A, Boulis N, Vitek J, Stacy M, Turner D, Verhagen L, Bakay R, Watts R, Guthrie B, Jankovic J, Simpson R, Tagliati M, Alterman R, Stern M, Baltuch G, Starr PA, Larson PS, Ostrem JL, Nutt J, Kieburtz K, Kordower JH, Olanow CW (2010) Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomized, controlled trial. Lancet Neurol 9:1164–1172PubMedCrossRefGoogle Scholar
  78. Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, Kaneko T (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29:444–453PubMedCrossRefGoogle Scholar
  79. McIver SR, Lee CS, Lee JM, Green SH, Sands MS, Snider BJ, Goldberg MP (2005) Lentiviral transduction of murine oligodendrocytes in vivo. J Neurosci Res 82:397–403PubMedCrossRefGoogle Scholar
  80. Michaelides M, Anderson SAR, Ananth M, Smirnov D, Thanos PK, Neumaier JF, Wang G-J, Volkow ND, Hurd YL (2013) Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks. J Clin Invest 123:5342–5350PubMedPubMedCentralCrossRefGoogle Scholar
  81. Migdalska-Richards A, Schapira AHV (2016) The relationship between glucocerebrosidase mutations and Parkinson disease. J Neurochem 139(Suppl 1):77–90PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mittermeyer G, Christine CW, Rosenbuth KH, Baker SL, Starr P, Larson O, Kaplan PL, Forsayeth J, Aminoff MJ, Bankiewicz KS (2012) Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 23:377–381PubMedPubMedCentralCrossRefGoogle Scholar
  83. Muramatsu S-I, Fujimoto K-I, Kato S, Mizukami H, Asari S, Ikeguchi K, Kawakami T, Urabe M, Kume A, Sato T, Watanabe E, Ozawa K, Nakano I (2010) A phase I study of aromatic l-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 9:1731–1735CrossRefGoogle Scholar
  84. Murlidharan G, Samulski RJ, Asokan A (2014) Biology of adeno-associated viral vectors in the central nervous system. Front Mol Neurosci 7:76PubMedPubMedCentralCrossRefGoogle Scholar
  85. Nagatsu T, Sawada M (2007) Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects. J Neural Transm Suppl 72:113–120CrossRefGoogle Scholar
  86. Nassi JJ, Cepko CL, Born RT, Beier KT (2015) Neuroanatomy goes viral! Front Neuroanat 9:80PubMedPubMedCentralCrossRefGoogle Scholar
  87. Niu W, Zang T, Smith DK, Yia Vue T, Zou Y, Bachoo R, Johnson JE, Zhang C-L (2015) SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Rep 4:780–794CrossRefGoogle Scholar
  88. Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 23:S8–S19PubMedCrossRefGoogle Scholar
  89. Oguchi M, Okajima M, Tanaka S, Koizumi M, Kikusui T, Ichihara N, Kato S, Kobayashi K, Sakagami M (2015) Double virus vector infection to the prefrontal network of the macaque brain. PLoS One 10:e0132825PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ojala DS, Amara DP, Schaffer DV (2015) Adeno-associated virus vectors and neurological gene therapy. Neuroscientist 21:84–98PubMedCrossRefGoogle Scholar
  91. Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, Watts C, Miskin J, Kelleher M, Deeley S, Iwamuro H, Lefaucher JP, Thiriez C, Fenelon G, Lucas C, Brugières P, Gabriel I, Abhay K, Drouot X, Tani N, Kas A, Ghaleh B, Le Corvoisier P, Dolphin P, Breen DP, Mason S, Guzman NV, Mazarakis ND, Radcliffe PA, Harrop R, Kingsman SM, Rascol O, Naylor S, Barker RA, Hantraye P, Remy P, Cesara P, Mirtophanous KA (2014) Long-term safety and tolerability of prosavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383:1138–1146PubMedCrossRefGoogle Scholar
  92. Papadakis E, Nicklin S, Baker A, White S (2004) Promoters and control elements: designing expression cassettes for gene therapy. CGT 4:89–113CrossRefGoogle Scholar
  93. Pignataro D, Sucunza D, Vanrell L, Lopez-Franco E, Dopeso-Reyes IG, Vales A, Hommel M, Rico AJ, Lanciego JL, Gonzalez-Aseguinolaza G (2017) Adeno-associated viral vectors for cell-specific delivery of therapeutic genes in the central nervous system. Front Neuroanat 11:2PubMedPubMedCentralCrossRefGoogle Scholar
  94. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598PubMedPubMedCentralCrossRefGoogle Scholar
  95. Quartu M, Serra MP, Boi M, Ferreti MT, Lai ML, Del Fiacco M (2007) Tissue distribution of Ret, GFRalpha-1, GFRalpha-2 and GFRalpha-3 receptors in the human brainstem at fetal, neonatal and adult age. Brain Res 1173:36–52PubMedCrossRefGoogle Scholar
  96. Rezvani M, Espanol-Suner R, Malato Y, Dumont L, Grimm AA, Kienle E, Bindman JG, Wiedtke E, Hsu BY, Naqvi SJ, Schwabe RF, Corvera CU, Grimm D, Willenbring H (2016) In vivo hepatic reprogramming of myofibroblasts with AAV vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell 18:809–816PubMedPubMedCentralCrossRefGoogle Scholar
  97. Richardson RM, Kells AP, Rosenbluth KH, Salegio EA, Fiandanca MS, Larson PS, Starr PA, Martin AJ, Lonser RR, Federoff HJ, Forsayeth JR, Bankiewicz KS (2011) Interventional MRI-guided putaminal delivery of AAV2-GDNF for a planned clinical trial in Parkinson’s disease. Mol Ther 19:1048–1057PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rocha EM, Smith GA, Park E, Cao H, Brown E, Hayes MA, Beagan J, McLean JR, Izen SC, Perez-Torres E, Hallet PJ, Isacson O (2015) Glucocerebrosidase gene therapy prevents alpha-synucleinopathy of midbrain dopamine neurons. Neurobiol Dis 82:495–503PubMedCrossRefGoogle Scholar
  99. Roth BL (2016) DREADDs for neuroscientists. Neuron 89:683–694PubMedPubMedCentralCrossRefGoogle Scholar
  100. San Sebastian W, Richardson RM, Kells AP, Lamarre C, Bringas J, Pivirotto P, Salegio EA, Dearmond SJ, Forsayeth J, Bankiewicz KS (2012) Safety and tolerability of magnetic resonance imaging-guided convection-enhanced delivery of AAV2-hAADC with a novel delivery platform in nonhuman primate striatum. Hum Gene Ther 23:210–217PubMedCrossRefGoogle Scholar
  101. Schoch S, Cibelli G, Thiel G (1996) Neuron-specific gene expression of synapsin I. J Biol Chem 271:3317–3323PubMedCrossRefGoogle Scholar
  102. Scofield MD, Boger HA, Smith RJ, Li H, Haydon PG, Kalivas PW (2015) Gq-DREADD selectively initiates glial glutamate release and inhibits cue-induced cocaine seeking. Biol Psychiatry 78:441–451PubMedCrossRefGoogle Scholar
  103. Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signaling controls tumour cell growth. Nature 441:424–430PubMedCrossRefGoogle Scholar
  104. Sidransky E (2005) Gaucher disease and parkinsonism. Mol Genet Metab 84:302–304PubMedCrossRefGoogle Scholar
  105. Sidransky E, Lopez G (2012) The link between the GBA gene and parkinsonism. Lancet Neurol 11:986–998PubMedPubMedCentralCrossRefGoogle Scholar
  106. Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R, Young B (2005) Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg 102:216–222PubMedCrossRefGoogle Scholar
  107. Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Basset-Duby R, Olson EN (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599–604PubMedPubMedCentralCrossRefGoogle Scholar
  108. Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay HC, Yang D, Reetz J, Brandes S, Dai Z, Putzer BM, Araúzo-Bravo MJ, Steinemann D, Luedde T, Schwabe RF, Manns MP, Schöler HR, Schambach A, Cantz T, Ott M, Sharma AD (2016) Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell 18:797–808PubMedCrossRefGoogle Scholar
  109. Su Z, Niu W, Liu M-L, Zou Y, Zhang C-L (2014) In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun 5:1–15Google Scholar
  110. Thiel G, Greengard P, Südhof TC (1991) Characterization of tissue-specific transcription by the human synapsin I gene promoter. Proc Natl Acad Sci USA 88:3431–3435PubMedPubMedCentralCrossRefGoogle Scholar
  111. Thompson LH, Grealish S, Kirik D, Bjöklund A (2009) Reconstruction of the nigrostriatal dopamine pathway in the adult mouse brain. Eur J Neurosci 30:625–638PubMedCrossRefGoogle Scholar
  112. Torper O, Ottosson DR, Pereira M, Lau S, Cardoso T, Grealish S, Parmar M (2015) In vivo reprogramming of striatal NG2 glia into functional neurons that integrate in the local host circuitry. Cell Reports 12:474–481PubMedPubMedCentralCrossRefGoogle Scholar
  113. Towne C, Schneider BL, Kieran D, Redmond DE Jr, Aebischer P (2010) Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Ther 17:141–146PubMedCrossRefGoogle Scholar
  114. Towne C, Setola V, Schneider BL, Aebischer P (2011) Neuroprotection by gene therapy targeting mutant SOD1 in individual pools of motor neurons does not translate into therapeutic benefit in fALS mice. Mol Ther 19:274–283PubMedCrossRefGoogle Scholar
  115. Urban DJ, Roth BL (2014) DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 55:399–417PubMedCrossRefGoogle Scholar
  116. Vazey EM, Aston-Jones G (2014) Designer receptor manipulations reveal a role of the locus ceruleus noradrenergic system in isoflurane general anesthesia. Proc Natl Acad Sci USA 111:3859–3864PubMedPubMedCentralCrossRefGoogle Scholar
  117. Volpicelli-Daley LA, Kirik D, Stoyka LE, Standaert DG, Harms AS (2016) How can r-AAV-α-synuclein and the fibril α-synuclein models advance our understanding of Parkinson’s disease? J Neurochem 139(Suppl 1):131–155PubMedPubMedCentralCrossRefGoogle Scholar
  118. Von Jonquieres G, Mersmann N, Klugmann CB, Harasta AE, Lutz B, Teahan O, Housley GD, Frohlich D, Kramer-Albers EM, Klugmann M (2013) Glial promoter selectivity following AAV-delivery to the immature brain. PLoS One 8:e65646CrossRefGoogle Scholar
  119. Walker DG, Beach TG, Xu R, Lile J, Beck KD, McGeer EG, McGeer PL (1998) Expression of the proto-oncogen Ret, a component of the GDNF receptor complex, persist in human substantia nigra neurons in Parkinson’s disease. Brain Res 792:207–217PubMedCrossRefGoogle Scholar
  120. Wang Y, Tien LT, Lapchak PA, Hoffer BJ (1996) GDNF triggers fiber outgrowth of fetal ventral mesencephalic grafts from substantia nigra to striatum in 6-OHDA-lesioned rats. Cell Tissue Res 286:225–233PubMedCrossRefGoogle Scholar
  121. Watakabe A, Ohtsuka M, Kinoshita M, Takaji M, Isa K, Mizukami H, Ozawa K, Isa T, Yamamori T (2015) Comparative analyses of adeno-associated ciral vectors serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci Res 93:144–157PubMedCrossRefGoogle Scholar
  122. Wilby MJ, Sinclair SR, Muir EM, Zietlow R, Adcock KH, Horellou P, Rogers JH, Dunnett SB, Fawcett JW (1999) A glial cell line-derived neurotrophic factor-secreting clone of the Schwann cell line SCTM41 enhances survival and fiber outgrowth from embryonic nigral neurons grafted to the striatum and to the lesioned substantia nigra. J Neurosci 19:2301–2312PubMedGoogle Scholar
  123. Zhou Q, Brown J, Kanarek A, Rajogopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • D. Pignataro
    • 1
    • 2
    • 3
  • D. Sucunza
    • 1
    • 2
    • 3
  • A. J. Rico
    • 1
    • 2
    • 3
  • I. G. Dopeso-Reyes
    • 1
    • 2
    • 3
  • E. Roda
    • 1
    • 2
    • 3
  • A. I. Rodríguez-Perez
    • 2
    • 4
  • J. L. Labandeira-Garcia
    • 2
    • 4
  • V. Broccoli
    • 5
    • 6
  • S. Kato
    • 7
  • K. Kobayashi
    • 7
  • José L. Lanciego
    • 1
    • 2
    • 3
  1. 1.Department of Neurosciences, Center for Applied Medical Research (CIMA)University of NavarraPamplonaSpain
  2. 2.Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
  3. 3.Instituto de Investigación Sanitaria de Navarra (IdiSNA)PamplonaSpain
  4. 4.Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUSUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  5. 5.Division of NeuroscienceOspedale San RaffaeleMilanItaly
  6. 6.CNR Institute of NeuroscienceMilanItaly
  7. 7.Department of Molecular Genetics, Institute of Biomedical SciencesFukushima Medical University School of MedicineFukushimaJapan

Personalised recommendations