Skip to main content
Log in

Maturation of interhemispheric signal propagation in autism spectrum disorder and typically developing controls: a TMS-EEG study

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Brain maturation from childhood to adulthood is associated with changes in structural and functional connectivity between remote brain regions. Altered connectivity plays an important role in the pathology of autism spectrum disorder (ASD), a severe neurodevelopmental disorder. ASD is associated with abnormal brain development and structurally altered interhemispheric connections. Cortico-cortical connectivity can be studied by a combination of transcranial magnetic stimulation (TMS) with concurrent EEG (TMS-EEG). TMS-evoked Interhemispheric Signal Propagation (ISP) is a correlate of interhemispheric connectivity related to the microstructure of the corpus callosum (CC). We used TMS-EEG to measure ISP in 22 ASD subjects (10–21 years) and 22 typically developing control subjects (9–19 years). We expected (1) maturational changes of ISP from childhood to young adulthood and also (2) reduced interhemispheric signal transfer in ASD. ISP was positively correlated with age in both ASD and typically developing control subjects. No difference in ISP between ASD and typically developing controls was found. Our findings demonstrate maturation of effective interhemispheric connectivity during adolescence. As ISP is related to the microstructure of the CC, the developmental change of ISP likely reflects maturation of the CC during the second life decade. The results support ISP as a valid parameter reflecting functional interhemispheric connectivity. Our results do not support a global deficit of interhemispheric connectivity in ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander AL, Lee JE, Lazar M et al (2007) Diffusion tensor imaging of the corpus callosum in autism. NeuroImage 34:61–73

    Article  PubMed  Google Scholar 

  • American Psychiatric Association (2013) The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition: DSM 5. American Psychiatric Publishing Inc, Washington, DC, London

    Google Scholar 

  • Anderson JS, Druzgal TJ, Froehlich A et al (2011) Decreased interhemispheric functional connectivity in autism. Cereb Cortex 21:1134–1146

    Article  PubMed  Google Scholar 

  • Ashtari M, Cervellione KL, Hasan KM et al (2007) White matter development during late adolescence in healthy males: a cross-sectional diffusion tensor imaging study. NeuroImage 35:501–510

    Article  PubMed  Google Scholar 

  • Baird G, Simonoff E, Pickles A et al (2006) Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP). Lancet 368:210–215

    Article  PubMed  Google Scholar 

  • Barnea-Goraly N, Kwon H, Menon V et al (2004) White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry 55:323–326

    Article  PubMed  Google Scholar 

  • Barnea-Goraly N, Menon V, Eckert M et al (2005) White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb Cortex 15:1848–1854

    Article  PubMed  Google Scholar 

  • Bender S, Basseler K, Sebastian I et al (2005) Electroencephalographic response to transcranial magnetic stimulation in children: evidence for giant inhibitory potentials. Ann Neurol 58:58–67

    Article  PubMed  Google Scholar 

  • Benes FM (1989) Myelination of cortical-hippocampal relays during late adolescence. Schizophr Bull 15:585–593

    Article  CAS  PubMed  Google Scholar 

  • Betancur C (2011) Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 1380:42–77

    Article  CAS  PubMed  Google Scholar 

  • Bölte S, Rühl D, Schmötzer G, Poustka F (2006) Diagnostisches interview für autismus-revidiert (ADI-R). Huber, Bern

    Google Scholar 

  • Bölte S, Poustka F, Constantino JN (2008) Assessing autistic traits: cross-cultural validation of the social responsiveness scale (SRS). Autism Res 1:354–363

    Article  PubMed  Google Scholar 

  • Bonekamp D, Nagae LM, Degaonkar M et al (2007) Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences. NeuroImage 34:733–742

    Article  PubMed  Google Scholar 

  • Brown WS, Paul LK (2000) Cognitive and psychosocial deficits in agenesis of the corpus callosum with normal intelligence. Cognit Neuropsychiatry 5:135–157

    Article  Google Scholar 

  • Brown WS, Paul LK, Symington M, Dietrich R (2005) Comprehension of humor in primary agenesis of the corpus callosum. Neuropsychologia 43:906–916

    Article  PubMed  Google Scholar 

  • Bruckmann S, Hauk D, Roessner V et al (2012) Cortical inhibition in attention deficit hyperactivity disorder: new insights from the electroencephalographic response to transcranial magnetic stimulation. Brain 135:2215–2230

    Article  PubMed  Google Scholar 

  • Bruneau N, Roux S, Adrien JL, Barthélémy C (1999) Auditory associative cortex dysfunction in children with autism: evidence from late auditory evoked potentials (N1 wave–T complex). Clin Neurophysiol 110:1927–1934

    Article  CAS  PubMed  Google Scholar 

  • Brunner E, Puri ML, Ghosh S, Rao CR (1996) Nonparametric methods in design and analysis of experiments. Handbook of Statistics. Elsevier, Amsterdam, pp 631–703

    Google Scholar 

  • Bulheller S, Häcker H (2002) Coloured progressive matrices. Swets Test Services, Frankfurt

    Google Scholar 

  • Bulheller S, Häcker H (2003) Raven’s progressive matrices und vocabulary scales. Swets Test Services, Frankfurt

    Google Scholar 

  • DiCicco-Bloom E, Lord C, Zwaigenbaum L et al (2006) The developmental neurobiology of autism spectrum disorder. J Neurosci 26:6897–6906

    Article  CAS  PubMed  Google Scholar 

  • Doherty D, Tu S, Schilmoeller K, Schilmoeller G (2006) Health-related issues in individuals with agenesis of the corpus callosum. Child Care Health Dev 32:333–342

    Article  CAS  PubMed  Google Scholar 

  • Döpfner M, Görtz-Dorten A, Lehmkuhl G, Breuer D (2008) Diagnostik-System für psychische Störungen nach ICD-10 und DSM-IV für Kinder und Jugendliche-II (DISYPS-II). Hogrefe, Göttingen

    Google Scholar 

  • Egaas B, Courchesne E, Saitoh O (1995) Reduced size of corpus callosum in autism. Arch Neurol 52:794–801

    Article  CAS  PubMed  Google Scholar 

  • Enticott PG, Rinehart NJ, Tonge BJ et al (2010) A preliminary transcranial magnetic stimulation study of cortical inhibition and excitability in high-functioning autism and Asperger disorder. Dev Med Child Neurol 52:179–183

    Article  Google Scholar 

  • Enticott PG, Kennedy HA, Rinehart NJ et al (2013) GABAergic activity in autism spectrum disorders: an investigation of cortical inhibition via transcranial magnetic stimulation. Neuropharmacology 68:202–209

    Article  CAS  PubMed  Google Scholar 

  • Frazier TW, Hardan AY (2009) A meta-analysis of the corpus callosum in autism. Biol Psychiatry 66:935–941

    Article  PubMed  PubMed Central  Google Scholar 

  • Freitag CM, Kleser C, Schneider M, von Gontard A (2007) Quantitative assessment of neuromotor function in adolescents with high functioning autism and Asperger Syndrome. J Autism Dev Disord 37:948–959

    Article  PubMed  Google Scholar 

  • Freitag CM, Luders E, Hulst HE et al (2009) Total brain volume and corpus callosum size in medication-naive adolescents and young adults with autism spectrum disorder. Biol Psychiatry 66:316–319

    Article  PubMed  PubMed Central  Google Scholar 

  • Garvey MA, Barker CA, Bartko JJ et al (2005) The ipsilateral silent period in boys with attention-deficit/hyperactivity disorder. Clin Neurophysiol 116:1889–1896

    Article  PubMed  Google Scholar 

  • Giedd JN, Rumsey JM, Castellanos FX et al (1996) A quantitative MRI study of the corpus callosum in children and adolescents. Dev Brain Res 91:274–280

    Article  CAS  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–862

    Article  CAS  PubMed  Google Scholar 

  • Gilbert DL, Isaacs KM, Augusta M et al (2011) Motor cortex inhibition: a marker of ADHD behavior and motor development in children. Neurology 76:615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahamy A, Behrmann M, Malach R (2015) The idiosyncratic brain: distortion of spontaneous connectivity patterns in autism spectrum disorder. Nat Neurosci 18:302–309

    Article  CAS  PubMed  Google Scholar 

  • Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited–comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage 32:989–994

    Article  PubMed  Google Scholar 

  • Jansiewicz EM, Goldberg MC, Newschaffer CJ et al (2006) Motor signs distinguish children with high functioning autism and Asperger’s syndrome from controls. J Autism Dev Disord 36:613–621

    Article  PubMed  Google Scholar 

  • Just MA (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127:1811–1821

    Article  PubMed  Google Scholar 

  • Kleinhans NM, Pauley G, Richards T et al (2012) Age-related abnormalities in white matter microstructure in autism spectrum disorders. Brain Res 1479:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraemer HC, Kupfer DJ (2006) Size of treatment effects and their importance to clinical research and practice. Biol Psychiatry 59:990–996

    Article  PubMed  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC et al (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T-Q, Noseworthy MD (2002) Mapping the development of white matter tracts with diffusion tensor imaging. Dev Sci 5:293–300

    Article  Google Scholar 

  • Litvak V, Komssi S, Scherg M et al (2007) Artifact correction and source analysis of early electroencephalographic responses evoked by transcranial magnetic stimulation over primary motor cortex. Neuroimage 37:56–70

    Article  PubMed  Google Scholar 

  • Marosi E, Harmony T, Sánchez L et al (1992) Maturation of the coherence of EEG activity in normal and learning-disabled children. Electroencephalogr Clin Neurophysiol 83:350–357

    Article  CAS  PubMed  Google Scholar 

  • Massimini M, Ferrarelli F, Huber R et al (2005) Breakdown of cortical effective connectivity during sleep. Science 309:2228–2232

    Article  CAS  PubMed  Google Scholar 

  • Minshew NJ, Williams DL (2007) The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch Neurol 64:945–950

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagy Z, Westerberg H, Klingberg T (2004) Maturation of white matter is associated with the development of cognitive functions during childhood. J Cogn Neurosci 16:1227–1233

    Article  PubMed  Google Scholar 

  • Nikulin VV, Kicić D, Kähkönen S, Ilmoniemi RJ (2003) Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement. Eur J Neurosci 18:1206–1212

    Article  PubMed  Google Scholar 

  • Nydén A, Carlsson M, Carlsson A, Gillberg C (2004) Interhemispheric transfer in high-functioning children and adolescents with autism spectrum disorders: a controlled pilot study. Dev Med Child Neurol 46:448–454

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Paul LK, Van Lancker-Sidtis D, Schieffer B et al (2003) Communicative deficits in agenesis of the corpus callosum: nonliteral language and affective prosody. Brain Lang 85:313–324

    Article  PubMed  Google Scholar 

  • Paul LK, Brown WS, Adolphs R et al (2007) Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 8:287–299

    Article  CAS  PubMed  Google Scholar 

  • Paus T, Sipila PK, Strafella AP (2001) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86:1983–1990

    CAS  PubMed  Google Scholar 

  • Poustka L, Jennen-Steinmetz C, Henze R et al (2012) Fronto-temporal disconnectivity and symptom severity in children with autism spectrum disorder. World J Biol Psychiatry 13:269–280

    Article  PubMed  Google Scholar 

  • Pujol J, Vendrell P, Junqué C et al (1993) When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann Neurol 34:71–75

    Article  CAS  PubMed  Google Scholar 

  • Rogasch NC, Fitzgerald PB (2013) Assessing cortical network properties using TMS-EEG. Hum Brain Mapp 34:1652–1669

    Article  PubMed  Google Scholar 

  • Rubia K (2013) Functional brain imaging across development. Eur Child Adolesc Psychiatry 22:719–731

    Article  PubMed  Google Scholar 

  • Rühl D, Bölte S, Feineis-Matthews S, Poustka F (2004) Diagnostische Beobachtungsskala für Autistische Störungen (ADOS). Huber, Bern

    Google Scholar 

  • Srinivasan R (1999) Spatial structure of the human alpha rhythm: global correlation in adults and local correlation in children. Clin Neurophysiol 110:1351–1362

    Article  CAS  PubMed  Google Scholar 

  • Uhlhaas PJ, Roux F, Singer W et al (2009) The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proc Natl Acad Sci 106:9866–9871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veniero D, Bortoletto M, Miniussi C (2009) TMS-EEG co-registration: on TMS-induced artifact. Clin Neurophysiol 120:1392–1399

    Article  PubMed  Google Scholar 

  • Voineskos AN, Farzan F, Barr MS et al (2010) The role of the corpus callosum in transcranial magnetic stimulation induced interhemispheric signal propagation. Biol Psychiatry 68:825–831

    Article  PubMed  Google Scholar 

  • Wahl M, Lauterbach-Soon B, Hattingen E et al (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27:12132–12138

    Article  CAS  PubMed  Google Scholar 

  • Whitford TJ, Rennie CJ, Grieve SM et al (2007) Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology. Hum Brain Mapp 28:228–237

    Article  PubMed  Google Scholar 

  • World Health Organization (1992) The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. World Health Organization, Geneva

    Google Scholar 

  • Ziemann U (2011) Transcranial magnetic stimulation at the interface with other techniques: a powerful tool for studying the human cortex. Neuroscientist 17:368–381

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

First, we thank all participants and their families for supporting this work. We also thank Jennifer Zimmermann for assistance with the data collection and analysis and the physicians and psychologist of the department for helping with recruitment of participants. We thank Hannah Mössinger for proofreading the manuscript for fluency in English. This study was supported by the LOEWE-Program “Neuronal Coordination Research Focus Frankfurt” (NeFF) of the State Hessen to CMF and SB. The work was further supported by the foundation of Marie Christine Held and Erika Hecker to AK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz A. Jarczok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarczok, T.A., Fritsch, M., Kröger, A. et al. Maturation of interhemispheric signal propagation in autism spectrum disorder and typically developing controls: a TMS-EEG study. J Neural Transm 123, 925–935 (2016). https://doi.org/10.1007/s00702-016-1550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-016-1550-5

Keywords

Navigation