Skip to main content
Log in

The triplet puzzle theory indicates extensive formation of heteromers between opioid and chemokine receptor subtypes

  • Translational Neurosciences - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Biochemical studies had previously demonstrated examples of heteromerization between opioid and chemokine receptors. Based on the triplet puzzle theory, it has been discovered that opioid receptors are structurally more closely related to chemokine receptors than to other class A G-protein-coupled receptors. Their similarity is established in terms of the number of triplet homologies Asn-Leu-Ala, Thr-Leu-Pro, and Tyr-Ala-Phe in the amino acid code of extensive numbers of members of these two receptor groups. Such widespread similarities probably mean that many opioid and chemokine receptor subtypes utilize some of these mutual triplets to form heteromers. The findings underline that heteromerization among these two receptor groups can represent a major general mechanism for significant interactions between opioid peptides and chemokines in pain and neuroinflammation within the neural–glial networks of the CNS including immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Borroto-Escuela DO, Narváez M, Pérez-Alea M, Tarakanov AO, Jiménez-Beristain A, Mudó G, Agnati LF, Ciruela F, Belluardo N, Fuxe K (2015a) Evidence for the existence of FGFR1-5-HT1A heteroreceptor complexes in the midbrain raphe 5-HT system. Biochem Biophys Res Commun 456:489–493

    Article  CAS  PubMed  Google Scholar 

  • Borroto-Escuela DO, Agnati LF, Bechter K, Jansson A, Tarakanov AO, Fuxe K (2015b) The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural–glial networks. Philos Trans R Soc B 370

  • Chen C, Li J, Bot G, Szabo I, Rogers TJ, Liu-Chen LY (2004) Heterodimerization and cross-desensitization between the mu-opioid receptor and the chemokine CCR5 receptor. Eur J Pharmacol 483:175–186

    Article  CAS  PubMed  Google Scholar 

  • Ding F, O’Donnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L, Wang F, Nedergaard M (2013) α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54:387–394

    Article  CAS  PubMed  Google Scholar 

  • El-Asmar L, Springael JY, Ballet S, Andrieu EU, Vassart G, Parmentier M (2005) Evidence for negative binding cooperativity within CCR5-CCR2b heterodimers. Mol Pharmacol 67:460–469

    Article  CAS  PubMed  Google Scholar 

  • Frizola M, Devi LA (2012) How opioid drugs bind to receptors. Nature 485:314–316

    Article  Google Scholar 

  • Fuxe K, Borroto-Escuela DO, Marcellino D, Romero-Fernandez W, Frankowska M, Guidolin D, Filip M, Ferraro L, Woods AS, Tarakanov A, Ciruela F, Agnati LF, Tanganelli S (2012) GPCR heteromers and their allosteric receptor–receptor interactions. Curr Med Chem 19:356–363

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Palkovits M, Tarakanov AO, Ciruela F, Agnati LF (2014a) Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the G protein-coupled receptor field. Neuropsychopharmacology 39:131–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuxe K, Borroto-Escuela DO, Ciruela F, Guidolin D, Agnati LF (2014b) Receptor–receptor interactions in heteroreceptor complexes: a new principle in biology. Focus on their role in learning and memory. Neurosci Disc 2:6

    Article  Google Scholar 

  • Fuxe K, Agnati LF, Marcoli M, Borroto-Escuela DO (2015) Volume transmission in central dopamine and noradrenaline neurons and its astroglial targets. Neurochem Res (Epub ahead of print)

  • Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA (2000) Heterodimerization of mu and delta opioid receptors: a role in opiate synergy. J Neurosci 20:RC110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heinisch S, Palma J, Kirby LG (2011) Interactions between chemokine and mu-opioid receptors: anatomical findings and electrophysiological studies in the rat periaqueductal grey. Brain Behav Immun 25:360–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR (2011) Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 63:772–810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399:697–700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Juric DM, Loncar D, Carman-Krzan M (2008) Noradrenergic stimulation of BDNF synthesis in astrocytes: mediation via α1- and β1/β2-adrenergic receptors. Neurochem Int 52:297–306

    Article  CAS  PubMed  Google Scholar 

  • Kroeze WK, Sheffer DJ, Roth BL (2003) G-protein-coupled receptors at a glance. J Cell Sci 116:4867–4869

    Article  CAS  PubMed  Google Scholar 

  • Manglik A et al (2012) Crystal structure of the μ-opioid receptor bound to a morphian antagonist. Nature 485:321–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nash B, Meucci O (2014) Functions of the chemokine receptor CXCR4 in the central nervous system and its regulation by μ-opioid receptors. Int Rev Neurobiol 118:105–208

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Dowd BF, Nguen T, Ji X, George SR (2013) D5 dopamine receptor carboxyl tail involved in D5–D2 heteromer formation. Biochem Biophys Res Commun 431:586–589

    Article  PubMed Central  PubMed  Google Scholar 

  • Parenty G, Appelbe S, Milligan G (2008) CXCR2 chemokine receptor antagonism enhances DOP opioid receptor function via allosteric regulation of the CXCR2-DOP receptor heterodimer. Biochem J 412:245–256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parsadaniantz SM, Rivat C, Rostène W, Réaux-Le Goazigo A (2015) Opioid and chemokine receptor crosstalk: a promising target for pain therapy? Nat Rev Neurosci 16:69–78

    Article  CAS  Google Scholar 

  • Pello OM, Martinez-Munoz L, Parrillas V, Serrano A, Rodriguez-Frade JM, Toro MJ et al (2008) Ligand stabilization of CXCR4/delta-opioid receptor heterodimers reveals a mechanism for immune response regulation. Eur J Immunol 38:537–549

    Article  CAS  PubMed  Google Scholar 

  • Percherancier Y, Berchiche A, Slight I et al (2005) Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. J Biol Chem 280:9895–9903

    Article  CAS  PubMed  Google Scholar 

  • Reaux-Le Goazigo A, Van Steenwinckel J, Rostene W, Parsadaniantz SM (2013) Current status of chemokines in the adult CNS. Prog Neurobiol 104:67–92

    Article  CAS  PubMed  Google Scholar 

  • Rostene W, Kitabgi P, Parsadaniantz SM (2007) Chemokines: a new class of neuromodulator? Nat Rev Neurosci 8:895–903

    Article  CAS  PubMed  Google Scholar 

  • Stevens RC, Cherezov V, Katritch V, Abagyan R, Kuhn P, Rosen H, Wüthrich K (2013) GPCR Network: a large-scale collaboration on GPCR structure and function. Nat Rev Drug Discov 12:25–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki S, Chuang LF, Yau P (2002) Doi RH, Chuang RY Interactions of opioid and chemokine receptors: oligomerization of mu, kappa, and delta with CCR5 on immune cells. Exp Cell Res 280:192–200

    Article  CAS  PubMed  Google Scholar 

  • Tarakanov AO, Fuxe KG (2010) Triplet puzzle: homologies of receptor heteromers. J Mol Neurosci 41:294–303

    Article  CAS  PubMed  Google Scholar 

  • Tarakanov AO, Fuxe KG (2013) Integrin triplets of marine sponges in murine and human MHCI-CD8 interface and in the interface of human neural receptor heteromers and subunits. SpringerPlus 2:128

    Article  PubMed Central  PubMed  Google Scholar 

  • Tripathi A, Vana PG, Chavan TS, Brueggemann LI, Byron KL, Tarasova NI, Volkman BF, Gaponenko V, Majetschak M (2015) Heteromerization of chemokine (C-X-C motif) receptor 4 with α1A/B-adrenergic receptors controls α1-adrenergic receptor function. Proc Nat Acad Sci USA 112:1659–1668

    Article  Google Scholar 

  • White FA, Bhangoo SK, Miller RJ (2005) Chemokines: integrators of pain and inflammation. Nat Rev Drug Discov 4:834–844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu B et al (2010) Structure of the CXCR4 chemokine recptor in complex with small molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu H et al (2012) Structure of the human kappa opioid receptor in complex with JDTic. Nature 485:327–332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander O. Tarakanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarakanov, A.O., Fuxe, K. The triplet puzzle theory indicates extensive formation of heteromers between opioid and chemokine receptor subtypes. J Neural Transm 122, 1509–1514 (2015). https://doi.org/10.1007/s00702-015-1421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-015-1421-5

Keywords

Navigation