Skip to main content
Log in

Impact of regional striatal dopaminergic function on kinematic parameters of Parkinson’s disease

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Among the cardinal parkinsonian motor deficits, the severity of bradykinesia correlates with striatal dopamine loss. However, the impact of regional striatal dopamine loss on specific components of bradykinesia remains unknown. Using gyroscopes, we measured the amplitude, speed, and frequency of finger tapping in 24 untreated patients with Parkinson’s disease (PD) and 28 healthy controls. Using positron emission tomography (PET) studies and [18F]-N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane (FP-CIT) in PD patients, we investigated the relationship between the mean values, variability and decrements of various kinematic parameters of finger tapping on one side (e.g. the mean, variability and decrement) and contralateral striatal FP-CIT binding. Compared with controls, PD patients had reduced amplitudes and speeds of tapping and showed greater decrement in those parameters. PD patients also exhibited greater irregularity in amplitude, speed, and frequency. Putaminal FP-CIT uptake levels correlated with the mean speed and amplitude, and caudate uptake levels correlated with mean amplitude. The variability of amplitude and speed correlated only with the caudate uptake levels. Neither caudate nor putaminal uptake correlated with frequency-related parameters or decrement in amplitude or speed. Reduced amplitude and speed of repetitive movement may be related to striatal dopaminergic deficit. Dopaminergic action in the caudate nucleus is required to maintain consistency of amplitude and speed. Although decrement of amplitude and speed is known to be specific for PD, we found that it did not mirror the degree of striatal dopamine depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albouy G, Sterpenich V, Vandewalle G, Darsaud A, Gais S, Rauchs G, Desseilles M, Boly M, Dang-Vu T, Maquet P et al (2012) Neural correlates of performance variability during motor sequence acquisition. Neuroimage 60:324–331

    Article  PubMed  Google Scholar 

  • Aldridge JW, Anderson RJ, Murphy JT (1980) Sensory-motor processing in the caudate nucleus and globus pallidus: a single-unit study in behaving primates. Can J Physiol Pharmacol 58(10):1192–1201

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271

    Article  CAS  PubMed  Google Scholar 

  • Anderson RJ, Aldridge JW, Murphy JT (1979) Function of caudate neurons during limb movements in awake primates. Brain Res 173(3):489–501

    Article  CAS  PubMed  Google Scholar 

  • Bajaj NP, Gontu V, Birchall J, Patterson J, Grosset DG, Lees AJ (2010) Accuracy of clinical diagnosis in tremulous parkinsonian patients: a blinded video study. J Neurol Neurosurg Psychiatry 81(11):1223–1228. doi:10.1136/jnnp.2009.193391

    Article  PubMed  Google Scholar 

  • Barbe MT, Amarell M, Snijders AH, Florin E, Quatuor EL, Schonau E, Fink GR, Bloem BR, Timmermann L (2014) Gait and upper limb variability in Parkinson’s disease patients with and without freezing of gait. J Neurol 261:330–342

    Article  PubMed  Google Scholar 

  • Benamer HT, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG (2000) Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov Disord 15(4):692–698

    Article  CAS  PubMed  Google Scholar 

  • Bergman H, Deuschl G (2002) Pathophysiology of Parkinson’s disease: from clinical neurology to basic neuroscience and back. Mov Disord 17(Suppl 3):S28–S40

    Article  PubMed  Google Scholar 

  • Crutcher MD, DeLong MR (1984) Single cell studies of the primate putamen. II. Relations to direction of movement and pattern of muscular activity. Exp Brain Res 53(2):244–258

    Article  CAS  PubMed  Google Scholar 

  • Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11):423–431

    Article  PubMed  Google Scholar 

  • Djaldetti R, Treves TA, Ziv I, Melamed E, Lampl Y, Lorberboym M (2009) Use of a single [123I]-FP-CIT SPECT to predict the severity of clinical symptoms of Parkinson disease. Neurol Sci 30(4):301–305. doi:10.1007/s10072-009-0100-4

    Article  PubMed  Google Scholar 

  • Espay AJ, Beaton DE, Morgante F, Gunraj CA, Lang AE, Chen R (2009) Impairments of speed and amplitude of movement in Parkinson’s disease: a pilot study. Mov Disord 24(7):1001–1008. doi:10.1002/mds.22480

    Article  PubMed  Google Scholar 

  • Espay AJ, Giuffrida JP, Chen R, Payne M, Mazzella F, Dunn E, Vaughan JE, Duker AP, Sahay A, Kim SJ, Revilla FJ, Heldman DA (2011) Differential response of speed, amplitude, and rhythm to dopaminergic medications in Parkinson’s disease. Mov Disord 26(14):2504–2508. doi:10.1002/mds.23893

    Article  PubMed Central  PubMed  Google Scholar 

  • Gibb WR, Lees AJ (1988) A comparison of clinical and pathological features of young- and old-onset Parkinson’s disease. Neurology 38(9):1402–1406

    Article  CAS  PubMed  Google Scholar 

  • Heldman DA, Giuffrida JP, Chen R, Payne M, Mazzella F, Duker AP, Sahay A, Kim SJ, Revilla FJ, Espay AJ (2011) The modified bradykinesia rating scale for Parkinson’s disease: reliability and comparison with kinematic measures. Mov Disord 26(10):1859–1863. doi:10.1002/mds.23740

    Article  PubMed Central  PubMed  Google Scholar 

  • Jellinger KA (1999) Post mortem studies in Parkinson’s disease—is it possible to detect brain areas for specific symptoms? J Neural Transm Suppl 56:1–29

    Article  CAS  PubMed  Google Scholar 

  • Jueptner M, Weiller C (1998) A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain 121:1437–1449

    Article  PubMed  Google Scholar 

  • Kato M, Kimura M (1992) Effects of reversible blockade of basal ganglia on a voluntary arm movement. J Neurophysiol 68(5):1516–1534

    CAS  PubMed  Google Scholar 

  • Ling H, Massey LA, Lees AJ, Brown P, Day BL (2012) Hypokinesia without decrement distinguishes progressive supranuclear palsy from Parkinson’s disease. Brain 135:1141–1153. doi:10.1093/brain/aws038

    Article  PubMed Central  PubMed  Google Scholar 

  • Lyoo CH, Ryu YH, Lee MJ, Lee MS (2012) Striatal dopamine loss and discriminative sensory dysfunction in Parkinson’s disease. Acta Neurol Scand 126:344–349

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Dhawan V, Mentis M, Chaly T, Spetsieris PG, Eidelberg D (2002) Parametric mapping of [18F]FPCIT binding in early stage Parkinson’s disease: a PET study. Synapse 45(2):125–133. doi:10.1002/syn.10090

    Article  CAS  PubMed  Google Scholar 

  • Marsden CD (1984) Which motor disorder in Parkinson’s disease indicates the true motor function of the basal ganglia? Ciba Found Symp 107:225–241

    CAS  PubMed  Google Scholar 

  • Miller NS, Kwak Y, Bohnen NI, Muller M, Dayalu P, Seidler RD (2013) The pattern of striatal dopaminergic denervation explains sensorimotor synchronization accuracy in Parkinson’s disease. Behav Brain Res 257:100–110

    Article  CAS  PubMed  Google Scholar 

  • Nagy A, Paroczy Z, Norita M, Benedek G (2005) Multisensory responses and receptive field properties of neurons in the substantia nigra and in the caudate nucleus. Eur J Neurosci 22:419–424

    Article  PubMed  Google Scholar 

  • Nakano K, Kayahara T, Tsutsumi T, Ushiro H (2000) Neural circuits and functional organization of the striatum. J Neurol 247(Suppl 5):V1–V15

    Article  PubMed  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 23(Suppl 3):S548–S559. doi:10.1002/mds.22062

    Article  PubMed  Google Scholar 

  • Pastor MA, Jahanshahi M, Artieda J, Obeso JA (1992) Performance of repetitive wrist movements in Parkinson’s disease. Brain 115:875–891

    Article  PubMed  Google Scholar 

  • Pirker W (2003) Correlation of dopamine transporter imaging with parkinsonian motor handicap: how close is it? Mov Disord 18(Suppl 7):S43–S51. doi:10.1002/mds.10579

    Article  PubMed  Google Scholar 

  • Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ (1992) Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Ann Neurol 32(2):151–161. doi:10.1002/ana.410320206

    Article  CAS  PubMed  Google Scholar 

  • Riecker A, Wildgruber D, Mathiak K, Grodd W, Ackermann H (2003) Parametric analysis of rate-dependent hemodynamic response functions of cortical and subcortical brain structures during auditorily cued finger tapping: a fMRI study. NeuroImage 18(3):731–739

    Article  PubMed  Google Scholar 

  • Rinne JO, Ruottinen H, Bergman J, Haaparanta M, Sonninen P, Solin O (1999) Usefulness of a dopamine transporter PET ligand [(18)F]beta-CFT in assessing disability in Parkinson’s disease. J Neurol Neurosurg Psychiatry 67(6):737–741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, Obeso JA (2009) Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol 8(12):1128–1139. doi:10.1016/S1474-4422(09)70293-5

    Article  CAS  PubMed  Google Scholar 

  • Romanelli P, Esposito V, Schaal DW, Heit G (2005) Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels. Brain Res Rev 48:112–128

    Article  PubMed  Google Scholar 

  • Seibyl JP, Marek KL, Quinlan D, Sheff K, Zoghbi S, Zea-Ponce Y, Baldwin RM, Fussell B, Smith EO, Charney DS, van Dyck C et al (1995) Decreased single-photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol 38(4):589–598. doi:10.1002/ana.410380407

    Article  CAS  PubMed  Google Scholar 

  • Sulzer J, Duenas J, Stampfili P, Hepp-Reymond MC, Kollias S, Seifritz E, Gassert R (2013) Delineating the whole brain BOLD response to passive movement kinematics. In: IEEE Int Conference Rehabil Robot pp 1–5. doi:10.1109/ICORR.2013.6650474

  • Teo WP, Rodrigues JP, Mastaglia FL, Thickbroom GW (2013) Comparing kinematic changes between a finger-tapping task and uncontrained finger flexion–extension task in patients with Parkinson’s disease. Exp Brain Res 227:323–331

    Article  CAS  PubMed  Google Scholar 

  • Turner RS, Desmurget M, Grethe J, Crutcher MD, Grafton ST (2003) Motor subcircuits mediating the control of movement extent and speed. J Neurophysiol 90:3958–3966

    Article  PubMed  Google Scholar 

  • Vogt T, Kramer K, Gartenschlaeger M, Schreckenberger M (2011) Estimation of further disease progression of Parkinson’s disease by dopamin transporter scan vs clinical rating. Parkinsonism Relat Disord 17(6):459–463. doi:10.1016/j.parkreldis.2011.04.002

    Article  PubMed  Google Scholar 

  • Weder BJ, Leenders KL, Vontobel P, Nienhusmeier M, Keel A, Zaunbauer W, Vonesch T, Ludin HP (1999) Impaired somatosensory discrimination of shape in Parkinson’s disease: association with caudate nucleus dopaminergic function. Hum Brain Map 8:1–12

    Article  CAS  Google Scholar 

  • Yogev-Seligmann G, Hausdorff JM, Giladi N (2008) The role of executive function and attention in gait. Mov Disord 23(3):329–342. doi:10.1002/mds.21720 (quiz 472)

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a faculty grant from the Yonsei University College of Medicine (Grant Number 6-2010-0016).

Conflict of interest

The authors have no conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Sik Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PNG 18 kb)

Supplementary Fig. 2

Scatter plots showing the correlation between the kinematic parameters of one side and contralateral FP-CIT uptake A. Correlations between parameters and caudate FP-CIT uptake B. Correlation between parameters and putaminal FP-CIT uptake (open circle = more-affected side; filled circle = less-affected side; R = Pearson’s correlation coefficient). Supplementary material 2 (TIFF 1,206 kb)

Supplementary material 3 (DOCX 15 kb)

Supplementary material 4 (DOCX 16 kb)

Supplementary material 5 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.J., Kim, SL., Lyoo, C.H. et al. Impact of regional striatal dopaminergic function on kinematic parameters of Parkinson’s disease. J Neural Transm 122, 669–677 (2015). https://doi.org/10.1007/s00702-014-1296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1296-x

Keywords

Navigation