Skip to main content
Log in

Dexamethasone in the presence of desipramine enhances MAPK/ERK1/2 signaling possibly via its interference with β-arrestin

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Antidepressant medication is the standard treatment for major depression disorder (MDD). However, the response to these treatments is often incomplete and many patients remain refractory. In the present study, we show that the glucocorticoid receptor (GR) agonist dexamethasone (DEX) increased MAPK/ERK1/2 signaling in the presence of the noradrenergic antidepressant, desipramine (DMI), while no such effect was induced by DEX or DMI alone in human neuroblastoma SH-SY5Y cells. This enhancement was dependent on the activation of both α2 adrenergic receptors (AR) and GR. The timing of MAPK/ERK1/2 activation as well as DEX-induced reduction in membranous α2 AR suggests the involvement of a β-arrestin-dependent mechanism. In line with the latter, DEX increased cytosolic and decreased membranous levels of β-arrestin. Concomitantly, DEX induced a time-dependent increase in cytosolic α2 AR-β-arrestin interaction and a decrease in β-arrestin interaction with Mdm2 E3 ubiquitin ligase. All of these effects of DEX were prevented by the GR antagonist RU486. Our data suggest an additional intracellular role for DEX, in which activation of GR interferes with the trafficking and degradation of β-arrestin-α2c-AR complex. We suggest that such an interaction in the presence of DMI can enhance MAPK/ERK1/2 signaling, a key player in neural plasticity and neurogenesis processes, which is impaired in MDD, while stimulated by antidepressants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adler CH, Meller E, Goldstein M (1987) Receptor reserve at the alpha-2 adrenergic receptor in the rat cerebral cortex. J Pharmacol Exp Ther 240:508–515

    CAS  PubMed  Google Scholar 

  • Ahn S, Wei H, Garrison TR, Lefkowitz RJ (2004) Reciprocal regulation of angiotensin receptor-activated extracellular signal-regulated kinases by beta-arrestins 1 and 2. J Biol Chem 279:7807–7811

    Article  CAS  PubMed  Google Scholar 

  • Alblas J, van Corven EJ, Hordijk PL, Milligan G, Moolenaar WH (1993) Gi-mediated activation of the p21ras-mitogen-activated protein kinase pathway by alpha 2-adrenergic receptors expressed in fibroblasts. J Biol Chem 268:22235–22238

    CAS  PubMed  Google Scholar 

  • Avissar S, Matuzany-Ruban A, Tzukert K, Schreiber G (2004) Beta-arrestin-1 levels: reduced in leukocytes of patients with depression and elevated by antidepressants in rat brain. Am J Psychiatry 161:2066–2072

    Article  PubMed  Google Scholar 

  • Bayer M, Kuci Z, Schomig E, Grundemann D, Dittmann H, Handgretinger R, Bruchelt G (2009) Uptake of mIBG and catecholamines in noradrenaline- and organic cation transporter-expressing cells: potential use of corticosterone for a preferred uptake in neuroblastoma- and pheochromocytoma cells. Nucl Med Biol 36:287–294

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar D, Karry R (2007) Sp1 expression is disrupted in schizophrenia; a possible mechanism for the abnormal expression of mitochondrial complex I genes, NDUFV1 and NDUFV2. PLoS ONE 2:e817

    Article  PubMed Central  PubMed  Google Scholar 

  • Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38:3751–3757

    CAS  PubMed  Google Scholar 

  • Bouwer C, Claassen J, Dinan TG, Nemeroff CB (2000) Prednisone augmentation in treatment-resistant depression with fatigue and hypocortisolaemia: a case series. Depress Anxiety 12:44–50

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Manji HK (2006) The extracellular signal-regulated kinase pathway: an emerging promising target for mood stabilizers. Curr Opin Psychiatry 19:313–323

    Article  PubMed  Google Scholar 

  • Cottingham C, Chen Y, Jiao K, Wang Q (2011) The antidepressant desipramine is an arrestin-biased ligand at the alpha(2A)-adrenergic receptor driving receptor down-regulation in vitro and in vivo. J Biol Chem 286:36063–36075

    Article  CAS  PubMed  Google Scholar 

  • Davies L, Paraskevopoulou E, Sadeq M, Symeou C, Pantelidou C, Demonacos C, Krstic-Demonacos M (2011) Regulation of glucocorticoid receptor activity by a stress responsive transcriptional cofactor. Mol Endocrinol 25:58–71

    Article  CAS  PubMed  Google Scholar 

  • DeBattista C, Posener JA, Kalehzan BM, Schatzberg AF (2000) Acute antidepressant effects of intravenous hydrocortisone and CRH in depressed patients: a double-blind, placebo-controlled study. Am J Psychiatry 157:1334–1337

    Article  CAS  PubMed  Google Scholar 

  • DeGraff JL, Gagnon AW, Benovic JL, Orsini MJ (1999) Role of arrestins in endocytosis and signaling of alpha2-adrenergic receptor subtypes. J Biol Chem 274:11253–11259

    Article  CAS  PubMed  Google Scholar 

  • DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510

    Article  CAS  PubMed  Google Scholar 

  • Dinan TG, Lavelle E, Cooney J, Burnett F, Scott L, Dash A, Thakore J, Berti C (1997) Dexamethasone augmentation in treatment-resistant depression. Acta Psychiatr Scand 95:58–61

    Article  CAS  PubMed  Google Scholar 

  • Donnici L, Tiraboschi E, Tardito D, Musazzi L, Racagni G, Popoli M (2008) Time-dependent biphasic modulation of human BDNF by antidepressants in neuroblastoma cells. BMC Neurosci 9:61–66

    Article  PubMed Central  PubMed  Google Scholar 

  • Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS (2007) A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry 61:661–670

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi Y, Rizavi HS, Roberts RC, Conley RC, Tamminga CA, Pandey GN (2001) Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide patients. J Neurochem 77:916–928

    Article  CAS  PubMed  Google Scholar 

  • Eickelberg O, Roth M, Lorx R, Bruce V, Rudiger J, Johnson M, Block LH (1999) Ligand-independent activation of the glucocorticoid receptor by beta2-adrenergic receptor agonists in primary human lung fibroblasts and vascular smooth muscle cells. J Biol Chem 274:1005–1010

    Article  CAS  PubMed  Google Scholar 

  • Fraser CC (2008) G protein-coupled receptor connectivity to NF-kappaB in inflammation and cancer. Int Rev Immunol 27:320–350

    Article  CAS  PubMed  Google Scholar 

  • Golan M, Schreiber G, Avissar S (2011) Antidepressants elevate GDNF expression and release from C glioma cells in a beta-arrestin1-dependent, CREB interactive pathway. Int J Neuropsychopharmacol 14:1289–1300

    Article  CAS  PubMed  Google Scholar 

  • Golan M, Schreiber G, Avissar S (2013) Antidepressant-induced differential ubiquitination of beta-arrestins 1 and 2 in mononuclear leucocytes of patients with depression. Int J Neuropsychopharmacol 16:1745–1754

    Article  CAS  PubMed  Google Scholar 

  • Haske T, Nakao M, Moudgil VK (1994) Phosphorylation of immunopurified rat liver glucocorticoid receptor by the catalytic subunit of cAMP-dependent protein kinase. Mol Cell Biochem 132:163–171

    Article  CAS  PubMed  Google Scholar 

  • Laifenfeld D, Klein E, Ben-Shachar D (2002) Norepinephrine alters the expression of genes involved in neuronal sprouting and differentiation: relevance for major depression and antidepressant mechanisms. J Neurochem 83:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Laifenfeld D, Karry R, Grauer E, Klein E, Ben-Shachar D (2005) Antidepressants and prolonged stress in rats modulate CAM-L1, laminin, and pCREB, implicated in neuronal plasticity. Neurobiol Dis 20:432–441

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Haigh RM, Jones CT (1992) Enhancement of noradrenaline-induced inositol polyphosphate formation by glucocorticoids in rat vascular smooth muscle cells. J Endocrinol 133:405–411

    Article  CAS  PubMed  Google Scholar 

  • Manji HK, Drevets WC, Charney DS (2001) The cellular neurobiology of depression. Nat Med 7:541–547

    Article  CAS  PubMed  Google Scholar 

  • Moore CA, Milano SK, Benovic JL (2007) Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol 69:451–482

    Article  CAS  PubMed  Google Scholar 

  • Morishita R, Nagata K, Ito H, Ueda H, Asano M, Shinohara H, Kato K, Asano T (2007) Expression of smooth muscle cell-specific proteins in neural progenitor cells induced by agonists of G protein-coupled receptors and transforming growth factor-beta. J Neurochem 101:1031–1040

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25

    Article  CAS  PubMed  Google Scholar 

  • Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant treatment increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 16:2365–2372

    CAS  PubMed  Google Scholar 

  • Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 49:391–404

    Article  CAS  PubMed  Google Scholar 

  • Pariante CM, Thomas SA, Lovestone S, Makoff A, Kerwin RW (2004) Do antidepressants regulate how cortisol affects the brain? Psychoneuroendocrinology 29:423–447

    Article  CAS  PubMed  Google Scholar 

  • Parsley S, Gazi L, Bobirnac I, Loetscher E, Schoeffter P (1999) Functional alpha2C-adrenoceptors in human neuroblastoma SH-SY5Y cells. Eur J Pharmacol 372:109–115

    Article  CAS  PubMed  Google Scholar 

  • Philipp M, Brede M, Hein L (2002) Physiological significance of α2-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol—Regul, Integr Comp Physiol 283:R287–R295

    CAS  Google Scholar 

  • Pinkas J, Naber SP, Butel JS, Medina D, Jerry DJ (1999) Expression of MDM2 during mammary tumorigenesis. Int J Cancer 81:292–298

    Article  CAS  PubMed  Google Scholar 

  • Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33:88–109

    Article  CAS  PubMed  Google Scholar 

  • Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110–1115

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Michel MC (2011) How can 1 + 1 = 3? beta2-adrenergic and glucocorticoid receptor agonist synergism in obstructive airway diseases. Mol Pharmacol 80:955–958

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Wasylyk B (2001) Ligand-dependent interaction of the glucocorticoid receptor with p53 enhances their degradation by Hdm2. Genes Dev 15:2367–2380

    Article  CAS  PubMed  Google Scholar 

  • Serretti A, Calati R, Goracci A, Di Simplicio M, Castrogiovanni P, De Ronchi D (2010) Antidepressants in healthy subjects: what are the psychotropic/psychological effects? Eur Neuropsychopharmacol 20:433–453

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2005) Receptor-specific ubiquitination of beta-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes. J Biol Chem 280:15315–15324

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, Drake MT, Nelson CD, Houtz DA, Xiao K, Madabushi S, Reiter E, Premont RT, Lichtarge O, Lefkowitz RJ (2006) Beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 281:1261–1273

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, Modi AS, Shukla AK, Xiao K, Berthouze M, Ahn S, Wilkinson KD, Miller WE, Lefkowitz RJ (2009) Beta-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc Natl Acad Sci USA 106:6650–6655

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Fan Y, Zha Q, Zhu MY (2010) Corticosterone up-regulates expression and function of norepinephrine transporter in SK-N-BE(2)C cells. J Neurochem 113:105–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, Komano T, Hori R (1992) Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem 267:24248–24252

    CAS  PubMed  Google Scholar 

  • Wallace AD, Cidlowski JA (2001) Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J Biol Chem 276:42714–42721

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Gao H, Ni Y, Wang B, Wu Y, Ji L, Qin L, Ma L, Pei G (2003) Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. J Biol Chem 278:6363–6370

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Peng D, Xie B, Jiang K, Fang Y (2012) The extracellular signal-regulated kinase pathway may play an important role in mediating antidepressant-stimulated hippocampus neurogenesis in depression. Med Hypotheses 79:87–91

    Article  CAS  PubMed  Google Scholar 

  • Yaniv SP, Ben-Shachar D, Klein E (2008) Norepinephrine-glucocorticoids interaction does not annul the opposite effects of the individual treatments on cellular plasticity in neuroblastoma cells. Eur J Pharmacol 596:14–24

    Article  CAS  PubMed  Google Scholar 

  • Yaniv SP, Lucki A, Klein E, Ben-Shachar D (2010) Dexamethasone enhances the norepinephrine-induced ERK/MAPK intracellular pathway possibly via dysregulation of the alpha2-adrenergic receptor: implications for antidepressant drug mechanism of action. Eur J Cell Biol 89:712–722

    Article  CAS  PubMed  Google Scholar 

  • Yuan P, Zhou R, Wang Y, Li X, Li J, Chen G, Guitart X, Manji HK (2010) Altered levels of extracellular signal-regulated kinase signaling proteins in postmortem frontal cortex of individuals with mood disorders and schizophrenia. J Affect Disord 124:164–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Chief Scientist of the Israeli Ministry of Health. Mdm2 antibodies were obtained as a gift from Prof. A. Ciechanover, Technion IIT, Israel.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorit Ben-Shachar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucki, A., Klein, E., Karry, R. et al. Dexamethasone in the presence of desipramine enhances MAPK/ERK1/2 signaling possibly via its interference with β-arrestin. J Neural Transm 121, 289–298 (2014). https://doi.org/10.1007/s00702-013-1099-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1099-5

Keywords

Navigation