Skip to main content

Advertisement

Log in

Trigonometric regressive spectral analysis: an innovative tool for evaluating the autonomic nervous system

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Biological rhythms, describing the temporal variation of biological processes, are a characteristic feature of complex systems. The analysis of biological rhythms can provide important insights into the pathophysiology of different diseases, especially, in cardiovascular medicine. In the field of the autonomic nervous system, heart rate variability (HRV) and baroreflex sensitivity (BRS) describe important fluctuations of blood pressure and heart rate which are often analyzed by Fourier transformation. However, these parameters are stochastic with overlaying rhythmical structures. R–R intervals as independent variables of time are not equidistant. That is why the trigonometric regressive spectral (TRS) analysis—reviewed in this paper—was introduced, considering both the statistical and rhythmical features of such time series. The data segments required for TRS analysis can be as short as 20 s allowing for dynamic evaluation of heart rate and blood pressure interaction over longer periods. Beyond HRV, TRS also estimates BRS based on linear regression analyses of coherent heart rate and blood pressure oscillations. An additional advantage is that all oscillations are analyzed by the same (maximal) number of R–R intervals thereby providing a high number of individual BRS values. This ensures a high confidence level of BRS determination which, along with short recording periods, may be of profound clinical relevance. The dynamic assessment of heart rate and blood pressure spectra by TRS allows a more precise evaluation of cardiovascular modulation under different settings as has already been demonstrated in different clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Cerutti S, Alberti M, Baselli G, Rimoldi O, Malliani A, Merri M, Pagani M (1988) Automatic assessment of the interaction between respiration and heart rate variability signal. Med Prog Technol 14(1):7–19

    PubMed  CAS  Google Scholar 

  • DeBoer RW, Karemaker JM, Strackee J (1984) Comparing spectra of a series of point events particularly for heart rate variability data. IEEE Trans Biomed Eng 31(4):384–387. doi:10.1109/TBME.1984.325351

    Article  PubMed  CAS  Google Scholar 

  • Dikecligil GN, Mujica-Parodi LR (2010) Ambulatory and challenge-associated heart rate variability measures predict cardiac responses to real-world acute emotional stress. Biol Psychiatry 67(12):1185–1190

    Article  PubMed  Google Scholar 

  • Friedrich C, Rudiger H, Schmidt C, Herting B, Prieur S, Junghanns S, Schweitzer K, Globas C, Schols L, Berg D, Reichmann H, Ziemssen T (2008) Baroreflex sensitivity and power spectral analysis in different extrapyramidal syndromes. J Neural Transm 115(11):1527–1536

    Article  PubMed  CAS  Google Scholar 

  • Friedrich C, Rudiger H, Schmidt C, Herting B, Prieur S, Junghanns S, Schweitzer K, Globas C, Schols L, Berg D, Reichmann H, Ziemssen T (2010) Baroreflex sensitivity and power spectral analysis during autonomic testing in different extrapyramidal syndromes. Mov Disord 25(3):315–324

    Article  PubMed  Google Scholar 

  • Gasch J, Reimann M, Reichmann H, Rudiger H, Ziemssen T (2011) Determination of baroreflex sensitivity during the modified Oxford maneuver by trigonometric regressive spectral analysis. PLoS One 6(3):e18061

    Article  PubMed  CAS  Google Scholar 

  • Halberg F, Engeli M, Swank R, Seaman G, Hissen H (1966) Cosinor-Auswertung circadianer Rhythmen mit niedriger Amplitude im menschlichen Blut. Phys Med Rehabil 7:1–7

    Google Scholar 

  • Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Eur Heart J 17(3):354–381

    Google Scholar 

  • Krause M, Rudiger H, Bald M, Nake A, Paditz E (2009) Autonomic blood pressure control in children and adolescents with type 1 diabetes mellitus. Pediatr Diabetes 10(4):255–263

    Article  PubMed  Google Scholar 

  • La Rovere MT (2000) Baroreflex sensitivity as a new marker for risk stratification. Z Kardiol 89(Suppl 3):44–50

    PubMed  Google Scholar 

  • La Rovere MT, Pinna GD, Maestri R, Sleight P (2013) Clinical value of baroreflex sensitivity. Neth Heart J 21(2):61–63

    Article  PubMed  Google Scholar 

  • Laguna P, Moody GB, Mark RG (1998) Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals. IEEE Trans Biomed Eng 45(6):698–715

    Article  PubMed  CAS  Google Scholar 

  • Laude D, Elghozi JL, Girard A, Bellard E, Bouhaddi M, Castiglioni P, Cerutti C, Cividjian A, Di Rienzo M, Fortrat JO, Janssen B, Karemaker JM, Leftheriotis G, Parati G, Persson PB, Porta A, Quintin L, Regnard J, Rudiger H, Stauss HM (2004) Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the EuroBaVar study). Am J Physiol Regul Integr Comp Physiol 286(1):R226–R231

    Article  PubMed  CAS  Google Scholar 

  • Mager DE, Abernethy DR (2007) Use of wavelet and fast Fourier transforms in pharmacodynamics. J Pharmacol Exp Ther 321(2):423–430

    Article  PubMed  CAS  Google Scholar 

  • Mense L, Reimann M, Rudiger H, Gahn G, Reichmann H, Hentschel H, Ziemssen T (2010) Autonomic function and cerebral autoregulation in patients undergoing carotid endarterectomy. Circ J 74(10):2139–2145

    Article  PubMed  Google Scholar 

  • Parati G (2005) Arterial baroreflex control of heart rate: determining factors and methods to assess its spontaneous modulation. J Physiol 565(Pt 3):706–707

    Article  PubMed  CAS  Google Scholar 

  • Parati G, Rizzoni D, Omboni S, Bernardi L, Mormino P, Rienzo MD (1995a) The analysis of blood pressure and heart rate variability: methodological aspects and interpretation of results. High Blood Press 4:186–203

    Google Scholar 

  • Parati G, Saul JP, Di Rienzo M, Mancia G (1995b) Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension 25(6):1276–1286

    Article  PubMed  CAS  Google Scholar 

  • Parati G, Saul JP, Castiglioni P (2004) Assessing arterial baroreflex control of heart rate: new perspectives. J Hypertens 22(7):1259–1263

    Article  PubMed  CAS  Google Scholar 

  • Reimann M, Friedrich C, Gasch J, Reichmann H, Rudiger H, Ziemssen T (2010a) Trigonometric regressive spectral analysis reliably maps dynamic changes in baroreflex sensitivity and autonomic tone: the effect of gender and age. PLoS One 5(8):e12187

    Article  PubMed  Google Scholar 

  • Reimann M, Julius U, Haink K, Lippold B, Tselmin S, Bornstein SR, Reichmann H, Rudiger H, Ziemssen T (2010b) LDL apheresis improves deranged cardiovagal modulation in hypercholesterolemic patients. Atherosclerosis 213(1):212–217

    Article  PubMed  CAS  Google Scholar 

  • Reimann M, Hamer M, Schlaich M, Malan NT, Rudiger H, Ziemssen T, Malan L (2012a) Autonomic responses to stress in Black versus Caucasian Africans: the SABPA study. Psychophysiology 49(4):454–461

    Article  PubMed  Google Scholar 

  • Reimann M, Hamer M, Schlaich MP, Malan NT, Ruediger H, Ziemssen T, Malan L (2012b) Greater cardiovascular reactivity to a cold stimulus is due to higher cold pain perception in black Africans: the sympathetic activity and ambulatory blood pressure in Africans (SABPA) study. J Hypertens 30(12):2416–2424

    Article  PubMed  CAS  Google Scholar 

  • Reimann M, Folprecht G, Haase R, Trautmann K, Ehninger G, Reichmann H, Ziemssen F, Ziemssen T (2013a) Anti-Vascular endothelial growth factor therapy impairs endothelial function of retinal microcirculation in colon cancer patients—an observational study. Exp Transl Stroke Med 5(1):7

    Article  PubMed  CAS  Google Scholar 

  • Reimann M, Julius U, Bornstein SR, Fischer S, Reichmann H, Rudiger H, Ziemssen T (2013b) Regular lipoprotein apheresis maintains residual cardiovascular and microvascular function in patients with advanced atherosclerotic disease. Atheroscler Suppl 14(1):135–141

    Article  PubMed  CAS  Google Scholar 

  • Rudiger H, Bald M (2001) Spontaneous baroreflex sensitivity in children and young adults calculated in the time and frequency domain. Auton Neurosci 93(1–2):71–78

    Article  PubMed  CAS  Google Scholar 

  • Ruediger H, Klinghammer L, Scheuch K (1999) The trigonometric regressive spectral analysis—a method for mapping of beat-to beat recorded cardiovascular parameters on to frequency domain in comparison to Fourier transformation. Comput Methods Programs Biomed 58:1–15

    Article  Google Scholar 

  • Ruediger H, Seibt R, Scheuch K, Krause M, Alam S (2004) Sympathetic and parasympathetic activation in heart rate variability in male hypertensive patients under mental stress. J Hum Hypertens 18(5):307–315. doi:10.1038/sj.jhh.1001671

    Article  PubMed  CAS  Google Scholar 

  • Schmidt C, Herting B, Prieur S, Junghanns S, Schweitzer K, Globas C, Schols L, Reichmann H, Berg D, Ziemssen T (2009) Valsalva manoeuvre in patients with different Parkinsonian disorders. J Neural Trans 116(7):875–880

    Article  CAS  Google Scholar 

  • Stauss HM, Persson PB (1995) Power spectral analysis of heart rate and blood pressure: markers for autonomic balance or indicators of baroreflex control? Clin Sci (Lond) 88(1):1–2

    CAS  Google Scholar 

  • Swenne CA (2013) Baroreflex sensitivity: mechanisms and measurement. Neth Heart J 21(2):58–60. doi:10.1007/s12471-012-0346-y

    Article  PubMed  CAS  Google Scholar 

  • Turjanmaa V, Kalli S, Sydanmaa M, Uusitalo A (1990) Short-term variability of systolic blood pressure and heart rate in normotensive subjects. Clin Physiol 10(4):389–401

    Article  PubMed  CAS  Google Scholar 

  • van Lill L, Malan L, van Rooyen J, Steyn F, Reimann M, Ziemssen T (2011) Baroreceptor sensitivity, cardiovascular responses and ECG left ventricular hypertrophy in men: the SABPA study. Blood Press 20(6):355–361

    Article  PubMed  Google Scholar 

  • Xhyheri B, Manfrini O, Mazzolini M, Pizzi C, Bugiardini R (2012) Heart rate variability today. Prog Cardiovasc Dis 55(3):321–331

    Article  PubMed  Google Scholar 

  • Ziemssen T, Reichmann H (2011) Cardiovascular autonomic testing in extrapyramidal disorders. J Neurol Sci 310(1–2):129–132

    Article  PubMed  Google Scholar 

  • Ziemssen T, Gasch J, Ruediger H (2008) Influence of ECG sampling frequency on spectral analysis of RR intervals and baroreflex sensitivity using the EUROBAVAR data set. J Clin Monit Comput 22(2):159–168

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

This paper was not sponsored by outside commercial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tjalf Ziemssen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziemssen, T., Reimann, M., Gasch, J. et al. Trigonometric regressive spectral analysis: an innovative tool for evaluating the autonomic nervous system. J Neural Transm 120 (Suppl 1), 27–33 (2013). https://doi.org/10.1007/s00702-013-1054-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-013-1054-5

Keywords

Navigation