Skip to main content

Advertisement

Log in

Modelling progressive autonomic failure in MSA: where are we now?

  • Movement Disorders - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Multiple system atrophy (MSA) is a fatal late-onset α-synucleinopathy that presents with features of ataxia, Parkinsonism, and pyramidal dysfunction in any combination. Over the last decade, efforts have been made to develop preclinical MSA testbeds for novel interventional strategies. The main focus has been on murine analogues of MSA-linked motor features and their underlying brainstem, cerebellar and basal ganglia pathology. Although progressive autonomic failure (AF) is a prominent clinical feature of patients with MSA, reflecting a disruption of both central and peripheral autonomic networks controlling cardiovascular, respiratory, urogenital, gastrointestinal and sudomotor functions, attempts of modelling this aspect of the human disease have been limited. However, emerging evidence suggests that AF-like features may occur in transgenic MSA models reflecting α-synucleinopathy lesions in distributed autonomic networks. Further research is needed to fully characterize both autonomic and motor features in optimized preclinical MSA models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bannister R, Gibson W, Michaels L, Oppenheimer DR (1981) Laryngeal abductor paralysis in multiple system atrophy. A report on three necropsied cases, with observations on the laryngeal muscles and the nuclei ambigui. Brain 104:351–368

    Article  PubMed  CAS  Google Scholar 

  • Benarroch EE (2003) Brainstem in multiple system atrophy: clinicopathological correlations. Cell Mol Neurobiol 23:519–526

    Article  PubMed  CAS  Google Scholar 

  • Benarroch EE (2007) Brainstem respiratory control: substrates of respiratory failure of multiple system atrophy. Mov Disord 22:155–161

    Article  PubMed  Google Scholar 

  • Benarroch EE, Schmeichel AM (2001) Depletion of corticotrophin-releasing factor neurons in the pontine micturition area in multiple system atrophy. Ann Neurol 50:640–645

    Article  PubMed  CAS  Google Scholar 

  • Benarroch EE, Smithson IL, Low PA, Parisi JE (1998) Depletion of catecholaminergic neurons of the rostral ventrolateral medulla in multiple systems atrophy with autonomic failure. Ann Neurol 43:156–163

    Article  PubMed  CAS  Google Scholar 

  • Benarroch EE, Schmeichel AM, Parisi JE (2002) Depletion of mesopontine cholinergic and sparing of raphe neurons in multiple system atrophy. Neurology 59:944–946

    PubMed  CAS  Google Scholar 

  • Benarroch EE, Schmeichel AM, Low PA, Parisi JE (2003a) Depletion of ventromedullary NK-1 receptor-immunoreactive neurons in multiple system atrophy. Brain 126:2183–2190

    Article  PubMed  Google Scholar 

  • Benarroch EE, Schmeichel AM, Parisi JE (2003b) Preservation of branchimotor neurons of the nucleus ambiguus in multiple system atrophy. Neurology 60:115–117

    PubMed  Google Scholar 

  • Benarroch EE, Schmeichel AM, Low PA, Parisi JE (2004) Involvement of medullary serotonergic groups in multiple system atrophy. Ann Neurol 55:418–422

    Article  PubMed  Google Scholar 

  • Benarroch EE, Schmeichel AM, Sandroni P, Low PA, Parisi JE (2006a) Differential involvement of hypothalamic vasopressin neurons in multiple system atrophy. Brain 129:2688–2696

    Article  PubMed  Google Scholar 

  • Benarroch EE, Schmeichel AM, Sandroni P, Low PA, Parisi JE (2006b) Involvement of vagal autonomic nuclei in multiple system atrophy and Lewy body disease. Neurology 66:378–383

    Article  PubMed  CAS  Google Scholar 

  • Benarroch EE, Schmeichel AM, Sandroni P, Low PA, Parisi JE (2007) Involvement of hypocretin neurons in multiple system atrophy. Acta Neuropathol 113:75–80

    Article  PubMed  CAS  Google Scholar 

  • Benarroch EE, Schmeichel AM, Low PA, Sandroni P, Parisi JE (2008) Loss of A5 noradrenergic neurons in multiple system atrophy. Acta Neuropathol 115:629–634

    Article  PubMed  CAS  Google Scholar 

  • Benarroch EE, Schmeichel AM, Low PA, Parisi JE (2010) Differential involvement of the periaqueductal gray in multiple system atrophy. Auton Neurosci 158(1–2):111–117

    Article  PubMed  Google Scholar 

  • Brown RC, Lockwood AH, Sonawane BR (2005) Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect 113:1250–1256

    Article  PubMed  CAS  Google Scholar 

  • Buchman VL, Ninkina N (2008) Modulation of alpha-synuclein expression in transgenic animals for modelling synucleinopathies—is the juice worth the squeeze? Neurotox Res 14:329–341

    Article  PubMed  Google Scholar 

  • Gallyas F, Wolff JR (1986) Metal-catalyzed oxidation renders silver intensification selective. Applications for the histochemistry of diaminobenzidine and neurofibrillary changes. J Histochem Cytochem 34:1667–1672

    Article  PubMed  CAS  Google Scholar 

  • Ghorayeb I, Bioulac B, Tison F (2005) Sleep disorders in multiple system atrophy. J Neural Transm 112:1669–1675

    Article  PubMed  CAS  Google Scholar 

  • Gilman S, Low PA, Quinn N, Albanese A, Ben-Shlomo Y, Fowler CJ, Kaufmann H, Klockgether T, Lang AE, Lantos PL, Litvan I, Mathias CJ, Oliver E, Robertson D, Schatz I, Wenning GK (1999) Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 163:94–98

    Article  PubMed  CAS  Google Scholar 

  • GM Shy, GA Drager (1960) A neurological syndrome associated with orthostatic hypotension: a clinical-pathologic study. Arch Neurol 2:511–527

    Google Scholar 

  • Graham JG, Oppenheimer DR (1969) Orthostatic hypotension and nicotine sensitivity in a case of multiple system atrophy. J Neurol Neurosurg Psychiatry 32:28–34

    Article  PubMed  CAS  Google Scholar 

  • Gray PA, Janczewski WA, Mellen N, McCrimmon DR, Feldman JL (2001) Normal breathing requires preBotzinger complex neurokinin-1 receptor-expressing neurons. Nat Neurosci 4:927–930

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA, Lantos PL (2010) Papp-Lantos inclusions and the pathogenesis of multiple system atrophy: an update. Acta Neuropathol 119:657–667

    Article  PubMed  CAS  Google Scholar 

  • Kafka MS, Polinsky RJ, Williams A, Kopin IJ, Lake CR, Ebert MH, Tokola NS (1984) Alpha-adrenergic receptors in orthostatic hypotension syndromes. Neurology 34:1121–1125

    PubMed  CAS  Google Scholar 

  • Kahle PJ (2008) alpha-Synucleinopathy models and human neuropathology: similarities and differences. Acta Neuropathol 115:87–95

    Article  PubMed  CAS  Google Scholar 

  • Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Spooren W, Fuss B, Mallon B, Macklin WB, Fujiwara H, Hasegawa M, Iwatsubo T, Kretzschmar HA, Haass C (2002) Hyperphosphorylation and insolubility of alpha-synuclein in transgenic mouse oligodendrocytes. EMBO Rep 3:583–588

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann H (1998) Multiple system atrophy. Curr Opin Neurol 11:351–355

    Article  PubMed  CAS  Google Scholar 

  • Kollensperger M, Wenning GK (2009) Assessing disease progression with MRI in atypical parkinsonian disorders. Mov Disord 24(Suppl 2):S699–S702

    Article  PubMed  Google Scholar 

  • Konno H, Yamamoto T, Iwasaki Y, Iizuka H (1986) Shy-Drager syndrome and amyotrophic lateral sclerosis. Cytoarchitectonic and morphometric studies of sacral autonomic neurons. J Neurol Sci 73:193–204

    Article  PubMed  CAS  Google Scholar 

  • Kunieda T, Zuscik MJ, Boongird A, Perez DM, Luders HO, Najm IM (2002) Systemic overexpression of the alpha 1B-adrenergic receptor in mice: an animal model of epilepsy. Epilepsia 43:1324–1329

    Article  PubMed  CAS  Google Scholar 

  • Lantos PL (1998) The definition of multiple system atrophy: a review of recent developments. J Neuropathol Exp Neurol 57:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer DR (1980) Lateral horn cells in progressive autonomic failure. J Neurol Sci 46:393–404

    Article  PubMed  CAS  Google Scholar 

  • Ozawa T (2007) Morphological substrate of autonomic failure and neurohormonal dysfunction in multiple system atrophy: impact on determining phenotype spectrum. Acta Neuropathol 114:201–211

    Article  PubMed  Google Scholar 

  • Papay R, Zuscik MJ, Ross SA, Yun J, McCune DF, Gonzalez-Cabrera P, Gaivin R, Drazba J, Perez DM (2002) Mice expressing the alpha(1B)-adrenergic receptor induces a synucleinopathy with excessive tyrosine nitration but decreased phosphorylation. J Neurochem 83:623–634

    Article  PubMed  CAS  Google Scholar 

  • Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94:79–100

    Article  PubMed  CAS  Google Scholar 

  • Plazzi G, Cortelli P, Montagna P, De MA, Corsini R, Contin M, Provini F, Pierangeli G, Lugaresi E (1998) REM sleep behaviour disorder differentiates pure autonomic failure from multiple system atrophy with autonomic failure. J Neurol Neurosurg Psychiatry 64:683–685

    Article  PubMed  CAS  Google Scholar 

  • Quinn N (1989) Multiple system atrophy—the nature of the beast. J Neurol Neurosurg Psychiatry 52:78–89

    Google Scholar 

  • Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, Masliah E (2002) Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 68:568–578

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Crochet S, Onoe H (2001) Pontine structures and mechanisms involved in the generation of paradoxical (REM) sleep. Arch Ital Biol 139:93–107

    PubMed  CAS  Google Scholar 

  • Saper CB (1998) “All fall down”: the mechanism of orthostatic hypotension in multiple systems atrophy and Parkinson’s disease. Ann Neurol 43:149–151

    Article  PubMed  CAS  Google Scholar 

  • Sasahara M, Fries JW, Raines EW, Gown AM, Westrum LE, Frosch MP, Bonthron DT, Ross R, Collins T (1991) PDGF B-chain in neurons of the central nervous system, posterior pituitary, and in a transgenic model. Cell 64:217–227

    Article  PubMed  CAS  Google Scholar 

  • Schmeichel AM, Buchhalter LC, Low PA, Parisi JE, Boeve BW, Sandroni P, Benarroch EE (2008) Mesopontine cholinergic neuron involvement in Lewy body dementia and multiple system atrophy. Neurology 70:368–373

    Article  PubMed  CAS  Google Scholar 

  • Shults CW, Rockenstein E, Crews L, Adame A, Mante M, Larrea G, Hashimoto M, Song D, Iwatsubo T, Tsuboi K, Masliah E (2005) Neurological and neurodegenerative alterations in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. J Neurosci 25:10689–10699

    Article  PubMed  CAS  Google Scholar 

  • Silber MH, Levine S (2000) Stridor and death in multiple system atrophy. Mov Disord 15:699–704

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M (1998) Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251:205–208

    Article  PubMed  CAS  Google Scholar 

  • Stefanova N, Reindl M, Neumann M, Haass C, Poewe W, Kahle PJ, Wenning GK (2005a) Oxidative stress in transgenic mice with oligodendroglial alpha-synuclein overexpression replicates the characteristic neuropathology of multiple system atrophy. Am J Pathol 166:869–876

    Article  PubMed  CAS  Google Scholar 

  • Stefanova N, Tison F, Reindl M, Poewe W, Wenning GK (2005b) Animal models of multiple system atrophy. Trends Neurosci 28:501–506

    Article  PubMed  CAS  Google Scholar 

  • Stefanova N, Reindl M, Neumann M, Kahle PJ, Poewe W, Wenning GK (2007) Microglial activation mediates neurodegeneration related to oligodendroglial alpha-synucleinopathy: implications for multiple system atrophy. Mov Disord 22:2196–2203

    Article  PubMed  Google Scholar 

  • Stefanova N, Poewe W, Wenning GK (2008) Rasagiline is neuroprotective in a transgenic model of multiple system atrophy. Exp Neurol 210:421–427

    Article  PubMed  CAS  Google Scholar 

  • Stemberger S, Poewe W, Wenning GK, Stefanova N (2010) Targeted overexpression of human alpha-synuclein in oligodendroglia induces lesions linked to MSA-like progressive autonomic failure. Exp Neurol 224:459–464

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K, Yoshimoto M, Tsuji S, Takahashi H (1998) Alpha-synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci Lett 249:180–182

    Article  PubMed  CAS  Google Scholar 

  • Wenning GK, Stefanova N (2009) Recent developments in multiple system atrophy. J Neurol 256:1791–1808

    Article  PubMed  Google Scholar 

  • Wenning GK, Ben Shlomo Y, Magalhaes M, Daniel SE, Quinn NP (1994) Clinical features and natural history of multiple system atrophy. An analysis of 100 cases. Brain 117(Pt 4):835–845

    Article  PubMed  Google Scholar 

  • Wenning GK, Tison F, Ben SY, Daniel SE, Quinn NP (1997) Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 12:133–147

    Article  PubMed  CAS  Google Scholar 

  • Wenning GK, Colosimo C, Geser F, Poewe W (2004) Multiple system atrophy. Lancet Neurol 3:93–103

    Article  PubMed  Google Scholar 

  • Wenning GK, Stefanova N, Jellinger KA, Poewe W, Schlossmacher MG (2008) Multiple system atrophy: a primary oligodendrogliopathy. Ann Neurol 64:239–246

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Sakakibara R, Uchiyama T, Liu Z, Ito T, Awa Y, Yamamoto K, Kinou M, Yamanishi T, Hattori T (2005) When is Onuf’s nucleus involved in multiple system atrophy? A sphincter electromyography study. J Neurol Neurosurg Psychiatry 76:1645–1648

    Article  PubMed  CAS  Google Scholar 

  • Yazawa I, Giasson BI, Sasaki R, Zhang B, Joyce S, Uryu K, Trojanowski JQ, Lee VM (2005) Mouse model of multiple system atrophy alpha-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron 45:847–859

    Article  PubMed  CAS  Google Scholar 

  • Zuscik MJ, Sands S, Ross SA, Waugh DJ, Gaivin RJ, Morilak D, Perez DM (2000) Overexpression of the alpha1B-adrenergic receptor causes apoptotic neurodegeneration: multiple system atrophy. Nat Med 6:1388–1394

    Article  PubMed  CAS  Google Scholar 

  • Zuscik MJ, Chalothorn D, Hellard D, Deighan C, McGee A, Daly CJ, Waugh DJ, Ross SA, Gaivin RJ, Morehead AJ, Thomas JD, Plow EF, McGrath JC, Piascik MT, Perez DM (2001) Hypotension, autonomic failure, and cardiac hypertrophy in transgenic mice overexpressing the alpha 1B-adrenergic receptor. J Biol Chem 276:13738–13743

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by grants of the Austrian Research Foundation graduate program SPIN (FWF W1206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor K. Wenning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stemberger, S., Wenning, G.K. Modelling progressive autonomic failure in MSA: where are we now?. J Neural Transm 118, 841–847 (2011). https://doi.org/10.1007/s00702-010-0576-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0576-3

Keywords

Navigation