Skip to main content

Advertisement

Log in

Behavioral and quantitative mitochondrial proteome analyses of the effects of simvastatin: implications for models of neural degeneration

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

An Erratum to this article was published on 21 August 2009

Abstract

The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, simvastatin, is used for lowering elevated low-density lipoprotein cholesterol concentrations. This translates into reduced cardiovascular disease-related morbidity and mortality, while the drugs’ anti-oxidant and anti-inflammatory properties have earmarked it as a potential treatment strategy against various neurological conditions. Statins have been shown to protect neurons from degeneration in a number of animal models. Although no mechanism completely explains the multiple benefits exerted by statins, emerging evidence suggests that in some degenerative and brain injury models, mitochondrial impairment may play a contributive rate. However, there evidence lacks to support a directly influencing role for statins on mitochondria-related proteins and motor behavior. Mitochondrial dysfunction may increase oxygen free radical production, which in turn leaves cells susceptible to energy failure, apoptosis and related events the occurance of which could prove fatal. The potential link between simvastatin treatment and mitochondrial function would be supported if key mitochondrial proteins were altered by simvastatin exposure. Using mass spectroscopy (MS), we identified 24 mitochondrial proteins that differed significantly (P < 0.05) in relative abundancy as a result of simvastatin treatment. The identified proteins represented many facets of mitochondrial integrity, with the majority forming part of the electron transport chain machinery, which is necessary for energy production. In a follow-up study, we then addressed whether simvastatin is capable of altering sensorimotor function in a mitochondrial toxin-induced animal model. Rats were pre-treated with simvastatin for 14 days, followed by a single unihemispheric (substantia nigra; SN) injection of rotenone, a mitochondrial complex I (Co-I) inhibitor. Results showed that simvastatin improved motor performance in rotenone-infused rats. The data are consistent with the possibility that alteration of mitochondrial function may contribute to the beneficial effects associated with statin use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SNCA:

Alpha(α)-synuclein

BSA:

Bovine serum albumin

Co-I:

Complex I

DRP-2:

Dihydropyrimidinase related protein 2

DA-ergic:

Dopaminergic

IEF:

Isoelectric focusing

NF:

Neurofilament

NSE:

Neuronal-specific enolase

p + r:

Placebo + rotenone

p + v:

Placebo + vehicle

PD:

Parkinson’s disease

PTPRF:

Protein tyrosine, receptor type F, polypeptide interacting protein

ROS:

Reactive oxygen species

SD:

Sprague–Dawley

SN:

Substantia nigra

TBS:

Tris–buffered saline

2-DE:

Two-dimensional gel electrophoresis

UPS:

Ubiquitin–proteasome system

s + v:

Statin + vehicle

s + r:

Statin + rotenone

MS:

Mass spectrometry

METC:

Mitochondrial electron transport chain

ESI-QUAD-TOF:

Quadripole time-of-flight

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Anstrom KK, Schallert T, Woodlee MT, Shattuck A, Roberts DCS (2007) Repetitive vibrissae-elicited forelimb placing before and immediately after unilateral 6-hydroxydopamine improves outcome in a model of Parkinson’s disease. Behav Brain Res 179:183–191

    Article  PubMed  CAS  Google Scholar 

  • Baxi MD, Vishwanatha JK (1995) Uracil DNA glycosylase/glyceraldehyde-3-phosphate dehydrogenase is an Ap4A binding protein. Biochem 34:9700–9707

    Article  CAS  Google Scholar 

  • Bindoff LA, Birch-Machin M, Cartilidge NE, Parker WD, Turnbull DM (1991) Respiratory chain abnormalities in skeletal muscle from patients with Parkinson’s disease. J Neurol Sci 104:203–208

    Article  PubMed  CAS  Google Scholar 

  • Brizio C, Barile M, Brandsch R (2002) Flavinylation of the precursor of mitochondrial dimethylglycine dehydrogenase by intact and solubilised mitochondria. FEBS Lett 522:141–146

    Article  PubMed  CAS  Google Scholar 

  • Burden-Gulley SM, Brady-Kalnay SM (1999) PTPmu regulates N-cadherin-dependent neurite outgrowth. J Cell Biol 144:1323–1336

    Article  PubMed  CAS  Google Scholar 

  • Burden-Gulley SM, Ensslen SE, Brady-Kalnay SM (2002) Protein tyrosine phosphatase-μ differentially regulates neurite outgrowth of nasal and temporal neurons in the retina. J Neurosci 22:3615–3627

    PubMed  CAS  Google Scholar 

  • Cabiscol E, Piulats E, Echave P, Herrero E, Ross J (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisae. J Biol Chem 275:27393–27398

    PubMed  CAS  Google Scholar 

  • Calabrese V, Lodi R, Tonon C, D’Agata V, Sapienza M, Scapagnini G, Mangiameli A, Pennisi G, Stella AM, Buterfield DA (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedrich’s ataxia. J Neurol Sci 233:145–162

    Article  PubMed  CAS  Google Scholar 

  • Castano EM, Roher AE, Esh CL, Kokjohn TA, Beach T (2006) Comparative proteomics of cerebrospinal fluid in neuropathologically confirmed Alzheimer’s disease and non-demented elderly subjects. Neurol Res 28:155–163

    Article  PubMed  CAS  Google Scholar 

  • Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Markesbery WR, Butterfield DA (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I. Creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase l-1. Free Radical Biol Med 33:562–571

    Article  CAS  Google Scholar 

  • Chen P, Li X, Sun Y, Liu Z, Cao R, He Q, Wang M, Xiong J, Xie J, Wang X, Liang S (2006) Proteomic analysis of rat hippocampal plasma membrane: characterization of potential neuronal-specific plasma membrane proteins. J Neurochem 98:1126–11240

    Article  PubMed  CAS  Google Scholar 

  • Cheng MY, Hartl FU, Marin J, Pollock RA, Kalousek F, Neupert W, Hallberg EM, Hallberg RL, Horwich AL (1989) Mitochondrial heat-shock protein HSP60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:620–625

    Article  PubMed  CAS  Google Scholar 

  • Chien CL, Liu TC, Ho CL, Lu KS (2005) Overexpression of neuronal intermediate filament protein alpha-internexin in PC12 cells. J Neurosci Res 5:693–706

    Article  CAS  Google Scholar 

  • Chopp M (1993) The roles of heat shock proteins and immediate early genes in central nervous system normal function and pathology. Curr Opin Neurol Neurosurg 6:6–10

    PubMed  CAS  Google Scholar 

  • Cole NB, Murphy DD, Grider T, Rueter S, Brasaemle D, Nussbaum RL (2002) Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein alpha-synuclein. J Biol Chem 277:6344–6352

    Article  PubMed  CAS  Google Scholar 

  • Dauberschmidt R, Marangos PJ, Zinsmeyer J, Nender V, Klages G, Gross J (1983) Severe head trauma and the changes of concentration of neuron-specific enolase in plasma and in cerebrospinal fluid. Clin Chim Acta 131:165–170

    Article  PubMed  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  PubMed  CAS  Google Scholar 

  • De Iuliis A, Grigoletto J, Recchia A, Giusti P, Arslan P (2005) A proteomic approach in the study of an animal model of Parkinson’s disease. Clin Chim Acta 357:202–209

    Article  PubMed  CAS  Google Scholar 

  • El Agnaf OM, Jakes R, Curran MD, Middleton D, Ingenito R, Bianchi E, Pessi A, Neill D, Wallace A (1998) Aggregates from mutant and wild-type alpha-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of beta-sheet and amyloid-like filaments. FEBS Lett 440:71–75

    Article  PubMed  CAS  Google Scholar 

  • Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP–thirty-one years (1969–2000). Neurochem Res 25:1439–1451

    Article  PubMed  CAS  Google Scholar 

  • Fabrizi GM, Cavallaro T, Angiari C, Cabrini I, Taioli F, Malerba G, Bertolasi L, Rizzuto N (2007) Charcot–Marie-Tooth disease type 2E, a disorder of the cytoskeleton. Brain 130:394–403

    Article  PubMed  Google Scholar 

  • Fisher N, Meunier B (2001) Effects of mutations in mitochondrial cytochrome b in yeast and man: deficiency, compensation and disease. Eur J Biochem 268:1155–1162

    Article  PubMed  CAS  Google Scholar 

  • Fiskum G, Starkov A, Polster BM, Chinopoulos C (2003) Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson’s disease. Ann NY Acad Sci 91:111–119

    Google Scholar 

  • Fornai F, Schlutter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, Lazzerr G, Busceti CL, Pontarelli F, Battaglia G et al (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin–proteasome system and alpha-synuclein. Proc Natl Acad Sci USA 102:3413–3418

    Article  PubMed  CAS  Google Scholar 

  • Frayne J, Ingram C, Love S, Hall L (2004) Localisation of phosphatidylethanolamine-binding protein in the brain and other tissues of the rat. Cell Tissue Res 298:415–423

    Article  Google Scholar 

  • Freedman RB, Hirst TR, Tuite MF (1994) Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci 19:331–336

    Article  PubMed  CAS  Google Scholar 

  • Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimura T, Shiromizu T, Watanabe H, Inagaki N, Iwamatsu A, Hotani H, Kaibuchi K (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4:583–591

    PubMed  CAS  Google Scholar 

  • Galante YM, Hatefi Y (1979) Purification and molecular and enzymatic properties of mitochondrial NADH dehydrogenase. Arch Biochem Biophys 192:559–568

    Article  PubMed  CAS  Google Scholar 

  • George AJ, Holsinger RMD, McLean CA, Tan S-S, Scott HS, Cardamone T, Cappai R, Masters CL, Li Q-X (2006) Decreased phosphatidylethanolamine binding protein expression correlates with Aβ accumulation in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Ageing 27:614–623

    Article  CAS  Google Scholar 

  • Goldman JE, Ye SH, Xhiu FC, Peress NS (1983) Lewy bodies of Parkinson’s disease contain neurofilament antigen. Science 221:1082–1084

    Article  PubMed  CAS  Google Scholar 

  • Goumon Y, Angelone T, Schoentgen F, Chasserot-Golaz S, Almas B, Fukami MM, Langley K, Welters ID, Tota B, Aunis D, Metz-Boutigue MH (2004) The hippocampal cholinergic neurostimulating peptide, the N-terminal fragment of the secreted phosphatidylethanolamine-binding protein, possesses a new biological activity on cardiac physiology. J Biol Chem 279:13054–13064

    Article  PubMed  CAS  Google Scholar 

  • Grip O, Janciauskiene S, Bredberg A (2008) Use of atorvastatin as an anti-inflammatory treatment in Crohn’s disease. Br J Pharmacol 155:1085–1092

    Article  PubMed  CAS  Google Scholar 

  • Haag MDM, Hofman A, Koudstaal PJ, Stricker BHC, Breteler MMB (2009) Statins are associated with a reduced risk of Alzheimer’s disease regardless of lipophilicity: The Rotterdam study. J Neurol Neurosurg Psych 80:13–17

    Article  CAS  Google Scholar 

  • Haas RH, Nasirian F, Nakano K, Ward D, Pay M, Hill R, Shults CW (1995) Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann Neurol 37:714–722

    Article  PubMed  CAS  Google Scholar 

  • Haigis MC, Guarente LP (2006) Mammalian sirtuins: emerging roles in physiology, aging and calorie restriction. Genes Dev 20:2913–2921

    Article  PubMed  CAS  Google Scholar 

  • Haselback RJ, McAlister-Henn L (1993) Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases. J Biol Chem 268:12116–12122

    Google Scholar 

  • Hay E, Royds JA, Davies-Jones GA, Lewtas NA, Timperley WR, Taylor CB (1984) Cerebrospinal fluid enolase in stroke. J Neurol Neurosurg Psych 47:724–729

    Article  CAS  Google Scholar 

  • Hirai K, Aliev G, Akihiko N, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M et al (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neuroscience 21:3017–3023

    CAS  Google Scholar 

  • Hirokawa N (1982) Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep etching method. J Cell Biol 94:129–142

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Chen H, Miller WC, Mailman RB, Woodard JL, Chen PC, Xiang D, Murrow RW, Wang YZ, Poole C (2007) Lower low-density lipoprotein cholesterol levels are associated with Parkinson’s disease. Mov Disord 22:377–381

    Article  PubMed  Google Scholar 

  • Huitorel P, Pantaloni D (1985) Bundling of microtubules by glyceraldehyde-3-phosphate dehydrogenase and its modulation by ATP. Eur J Biochem 150:265–269

    Article  PubMed  CAS  Google Scholar 

  • Hunzinger C, Wozny W, Schwall GP, Poznanović S, Stegmann W, Zengerling H, Schoepf R, Groebe K, Cahill MA, Osiewacz HD et al (2006) Comparative profiling of the mammalian mitochondrial proteome: multiple aconitase-2 isoforms including N-formylkynurenine modifications as part of a protein biomarker signature for reactive oxidative species. J Proteome Res 5:625–633

    Article  PubMed  CAS  Google Scholar 

  • Iacobazzi V, Palmieri F, Walker JE (1992) Sequences of the human and bovine genes for the mitochondrial 2-oxoglutarate carrier. DNA Seq 3:79–88

    Article  PubMed  CAS  Google Scholar 

  • Jimi T, Wakayama Y, Shibuya S, Nakata H, Tomaru T, Takahashi Y, Kosaka K, Asano T, Kato K (1992) High levels of nervous system-specific proteins in cerebrospinal fluid in patients with early stage Creautzfeld-Jakob disease. Clin Chim Acta 211:37–46

    Article  PubMed  CAS  Google Scholar 

  • Jo E, McLaurin J, Yip CM, St. George-Hyslop P, PE Fraser (2000) Alpha-synuclein membrane interactions and lipid specificity. J Biol Chem 275:34328–34334

    Article  PubMed  CAS  Google Scholar 

  • Jones R, Hall L (1991) A 23-kDa protein from rat sperm plasma membranes shows sequence similarity and phospholipids binding properties to a bovine brain cytosolic protein. Biochim Biophys Acta 1080:78–82

    PubMed  CAS  Google Scholar 

  • Kaplan MP, Ching SSM, Fliegner KH, Liem RKH (1990) Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. J Neurosci 10:2735–2748

    PubMed  CAS  Google Scholar 

  • Karlson J-E, Rosengren LE, Haglid KG (1991) Quantitative and qualitative alterations of neuronal and glial intermediate filaments in rat nervous system after exposure to 2, 5-hexanedione. J Neurochem 57:1437–1444

    Article  Google Scholar 

  • Karp NA, Lilley KS (2009) Investigating sample pooling strategies for DIGE experiments to address biological variability. Proteomics 9:388–397

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto RM, Caswell AH (1986) Autophosphorylation of glyceraldehydephosphate dehydrogenase and phosphorylation of protein from skeletal muscle microsomes. Biochem 25:657–661

    CAS  Google Scholar 

  • Kazuk Y, Kimura M, Nishigaki R, Kai Y, Abe S, Okita C, Shirayoshi Y, Schultz TC, Tomizuka K, Hanaoka K, Inoue T, Oshimura M (2004) Human chromosome 21q22.2-qter carries a gene(s) responsible for downregulation of mlc2a and PEBP in Down syndrome model mice. Biochem Biophys Res Commun 317:491

    Article  CAS  Google Scholar 

  • Kim KB, Lee JW, Lee CS, Kim BW, Choo HJ, Jung SY, Chi SG, Yoon YS, Yoon G, Koon YG (2006) Oxidation–reduction respiratory chains and ATP synthase complex are localized in detergent-resistant lipid rafts. Proteomics 6:2444–2453

    Article  PubMed  CAS  Google Scholar 

  • Klettner A (2004) The induction of heat shock proteins as a potential strategy to treat neurodegenerative disorders. Drug News Perspect 17:299–306

    Article  PubMed  CAS  Google Scholar 

  • Klettner A, Herdegen T (2003) The immunophilin-ligands FK506 and V-10, 367 mediate neuroprotection by the heat-shock response. Br J Pharmacol 138:1004–1012

    Article  PubMed  CAS  Google Scholar 

  • Kobeissy FH, Ottens AK, Zhang Z, Liu MC, Denslow ND, Dave JR, Tortella FC, Hayes RL, Wang KK (2006) Novel differential neuroproteomics analysis of traumatic brain injury in rats. Mol Cell Proteomics 5:1887–1898

    Article  PubMed  CAS  Google Scholar 

  • Law MR, Wald NJ, Rudnicka AR (2003) Quantifying effect of statins on low-density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ 326:1423–1429

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128

    Article  PubMed  CAS  Google Scholar 

  • Lu B (2009) Mitochondrial dynamics and neurodegeneration. Curr Neurol Neurosci Rep 9:212–219

    Article  PubMed  Google Scholar 

  • Lu D, Gousseva A, Chen J, Pannu P, Li Y, Mahmood A, Chopp M (2004) Atorvastatin reduces neurological deficit and increases synaptogenesis, aniogenesis, and neuronal survival in rats subjected to traumatic brain injury. J Neurotrauma 21:21–32

    Article  PubMed  Google Scholar 

  • Lubec G, Nonaka M, Krapfenbauer K, Gratzer M, Cairns N, Fountoulakis M (1999) Expression of the dihydropyrimidinase-related protein 2 (DRP-2) in Down syndrome and Alzheimer’s disease brain is downregulated at the mRNA and dysregulated at the protein level. J Neural Transm Suppl 57:161–177

    PubMed  CAS  Google Scholar 

  • Mancardi GL, Liwnicz BH, Mandybur TI (1983) Fibrous astrocytes in Alzheimer’s disease and senile dementia of Alzheimer’s type. An immunohistochemical and ultrastructural study. Acta Neuropathol 61:76–80

    Google Scholar 

  • McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin–proteasome system in Parkinson’s disease. Nat Rev Neurosci 2:589–594

    Article  PubMed  CAS  Google Scholar 

  • Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150:1283–1298

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Comm 163:1450–1455

    Article  PubMed  CAS  Google Scholar 

  • Morgenegg G, Winkler GC, Hubscher U, Heizmann CW, Mous J, Kuenzle CC (1986) Glyceraldehyde-3-phosphate dehydrogenase is a nonhistone protein and a possible activator of transcription in neurons. J Neurochem 47:54–62

    Article  PubMed  CAS  Google Scholar 

  • Nawashiro H, Messing A, Azzam N, Brenner M (1998) Mice lacking GFAP are hypersensitive to traumatic cerebrospinal injury. Neuroreport 9:1691–1696

    Article  PubMed  CAS  Google Scholar 

  • Nelson BD, Fleischer S (1981) Phospholipid requirements for the reconstitution of Complex-III vesicles exhibiting controlled electron transport. J Biochem 194:783–787

    CAS  Google Scholar 

  • Nobuhara Y, Nakahara K, Higuchi I, Yoshida T, Fushiki S, Osame M, Arimura K, Nakagawa M (2004) Juvenile form of Alexander disease with GFAP mutation and mitochondrial abnormality. Neurology 63:1302–1304

    PubMed  CAS  Google Scholar 

  • Okubo A, Hiroyuki K, Owada Y, Kunizuka H, Itoh H, Izaki K, Kondo H, Tashima Y, Yoshimoto T, Mizoi K (2000) Simultaneous induction of mitochondrial heat shock protein mRNAs in rat forebrain ischemia. Mol Brain Res 84:127–134

    Article  PubMed  CAS  Google Scholar 

  • Ostermann J, Horwich AL, Neupert W, Hartl FU (1989) Protein folding in mitochondria requires complex formation with HSP60 and ATP hydrolysis. Nature 341:125–130

    Article  PubMed  CAS  Google Scholar 

  • Palmieri L, Pardo B, Lasorsa FM, del Arco A, Kobayashi K, Iijima M, Runswick MJ, Walker JE, Saheki T, Satrustegui J, Palmieri F (2001) Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria. J EMBO 20:5060–5069

    Article  CAS  Google Scholar 

  • Panov A, Dikalov S, Shalbuyeva N, Taylor G, Sherer T, Greenamyre JT (2005) Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short-term systemic rotenone intoxication. J Biol Chem 280:42026–42035

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Perry AC, Hall L, Bell AE, Jones R (1994) Sequence analysis of a mammalian phospholipid-binding-protein from testis and epididymis and its distribution between spermatozoa and extra-cellular secretions. J Biochem 301:235–242

    CAS  Google Scholar 

  • Pickworth Glusker J (1971) In Boyer PD (ed) The enzymes, vol 5. Academic Press, Orlando, pp 413–439

  • Pleines UE, Morganti-Kossmann MC, Rancan M, Joller H, Trentz O, Kossmann T (2001) S-100 beta reflects the extent of injury and outcome, whereas neuronal specific enolase is a better indicator of neuroinflammation in patients with severe traumatic brain injury. J Neurotrauma 18:491–498

    Article  PubMed  CAS  Google Scholar 

  • Poon HF, Vaishnav RA, Getchell TV, Getchell ML, Butterfield DA (2006a) Quantitative proteomics analysis of differential protein expression and oxidative modification of specific proteins in the brains of old mice. Neurobiol Aging 27:1010–1019

    Article  PubMed  CAS  Google Scholar 

  • Poon HF, Shepherd HM, Reed TT, Calabrese V, Stella AM, Pennisi G, Cai J, Pierce WM, Klein JB, Butterfield DA (2006b) Proteomics analysis provides insight into caloric restriction-mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes: mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis. Neurobiol Aging 27:1020–1034

    Article  PubMed  CAS  Google Scholar 

  • Qu CS, Lu D, Goussev A, Schallert T, Mahmood A, Chopp M (2005) Effect of atorvastatin on spatial memory, neuronal survival, and vascular density in female rats after traumatic brain injury. J Neurosurg 103:695–701

    Article  PubMed  CAS  Google Scholar 

  • Quinlan RA, Brenner M, Goldman JE, Messing A (2007) GFAP and its role in Alexander disease. Exp Cell Res 313:2077–2087

    Article  PubMed  CAS  Google Scholar 

  • Quinn CC, Gray GE, Hockfield S (1999) A family of proteins implicated in axon guidance and outgrowth. J Neurobiol 41:158–164

    Article  PubMed  CAS  Google Scholar 

  • Rajanikant GK, Zemke D, Kassab M, Majid A (2007) The therapeutic potential of statins in neurological disorders. Curr Med Chem 14:103–112

    Article  PubMed  CAS  Google Scholar 

  • Reddy PH, Mao P, Manczak M (2009) Mitochondrial structure and functional dynamics in Huntington’s disease. Brain Res Rev (in press)

  • Rigobello MP, Donella-Deana A, Cesaro L, Bindoli A (2000) Isolation, purification, and characterization of a rat liver mitochondrial protein disulfide isomerase. Free Radical Biol Med 28:266–272

    Article  CAS  Google Scholar 

  • Rigobello MP, Donella-Deana A, Cesaro L, Bindoli A (2001) Distribution of protein disulphide isomerase in rat liver mitochondria. Biochem J 356:567–570

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues RW, Gomide VC, Chadi G (2004) Astroglial and microglial activation in the Wistar rat ventral tegmental area after a single striatal injection of 6-hydroxydopamine. Int J Neurosci 114:197–216

    Article  PubMed  CAS  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:998–1063

    Article  CAS  Google Scholar 

  • Sato K, Nishina Y, Shiga K (1997) In vitro assembly of FAD, AMP, and the two subunits of electron-transferring flavoprotein: an important role of AMP related with the conformational change of the apoprotein. J Biochem 121:477–486

    PubMed  CAS  Google Scholar 

  • Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacol 39:777–787

    Article  CAS  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    Article  PubMed  CAS  Google Scholar 

  • Schmeer C, Kretz A, Isenmann C (2006) Statin-mediated protective effects in the central nervous system: general mechanisms and putative role of stress proteins. Restor Neurol Neurosci 24:79–95

    PubMed  CAS  Google Scholar 

  • Schoch S, Castillo PE, Jo T, Mukherjee K, Geppert M, Wang Y, Schmitz F, Malenka RC, Südhof TC (2002) RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415:321–326

    Article  PubMed  CAS  Google Scholar 

  • Shea TB, Zheng YL, Ortiz D, Pant HC (2004) Cyclin-dependent kinase 5 increases perikaryal neurofilament phosphorylation and inhibits neurofilament axonal transport in response to oxidative stress. J Neurosci Res 76:795–800

    Article  PubMed  CAS  Google Scholar 

  • Sherman MY, Goldberg AL (2001) Cellular defences against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29:15–32

    Article  PubMed  CAS  Google Scholar 

  • Shevshenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  Google Scholar 

  • Sindhu KM, Banerjee R, Senthilkumar KS, Saravanan KS, Raju BC, Rao JM, Mohanakumar KP (2006) Rats with unilateral median forebrain bundle, but not striatal or nigral, lesions by the neurotoxins MPP+ or rotenone display differential sensitivity to amphetamine and apomorphine. Pharmacol Biochem Behav 84:321–329

    Article  PubMed  CAS  Google Scholar 

  • Sioud M, Jesperson L (1996) Enhancement of hammerhead ribozyme catalysis by glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol 257:775–789

    Article  PubMed  CAS  Google Scholar 

  • Smeitink JA, Loeffen JL, Triepels RH, Smeets JM, Trijbels JM, Van den Heuvel LP (1998) Nuclear genes of human complex I of the mitochondrial electron transport chain: state of the art. Hum Mol Genet 7:1573–1579

    Article  PubMed  CAS  Google Scholar 

  • Stankovic RK, Li Z (2006) Decreased neurofilament density in large myelinated axons of metallothionein-I, II knockout mice. Neurosci Lett 402:1–6

    Article  PubMed  CAS  Google Scholar 

  • Stillman TJ, Baker PJ, Britton KL, Rice DW (1993) Conformational flexibility in glutamate dehydrogenase role of water in substrate recognition and catalysis. J Mol Biol 234:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Stryer L, Bourne HR (1986) G proteins: a family of signal transducers. Ann Rev Cell Biol 2:391–419

    PubMed  CAS  Google Scholar 

  • Sun M, Lingxin K, Wang X, Lu X, Gao Q, Geller AI (2005) Comparison of the capability of GDNF, BDNF, or both, to protect nigrostrial neurons in a rat model of Parkinson’s disease. Brain Res 52:119–129

    Article  CAS  Google Scholar 

  • Testa CM, Sherer TB, Greenamyre JT (2005) Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res 134:109–118

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Lee VM (1998) Aggregation of neurofilament and alpha-synuclein protein in Lewy bodies: implications for the pathogenesis of Parkinson’s disease in Lewy body dementia. Arch Neurol 5:151–152

    Article  Google Scholar 

  • Vallee BS, Tauc P, Brochon JC, Maget-Dana R, Lelievre D, Metz-Boutigue MH, Bureaud N, Schoentgen F (2001) Behavior of bovine phosphatidylethanolamine-binding protein with model membranes: evidence of affinity for negatively charged proteins. Eur J Biochem 268:5831–5841

    Article  PubMed  CAS  Google Scholar 

  • Van Laar VS, Berman SB (2009) Mitochondrial dynamics in Parkinson’s disease. Exp Neurol (in press)

  • Vega GL, Weiner MF, Lipton AM, von Bergmann K, Lutjohann D, Moore C, Svetlik D (2003) Reductions in levels of 24S-hydroxycholesterol by statin treatment in patients with Alzheimer’s disease. Arch Neurol 60:510–515

    Article  PubMed  Google Scholar 

  • Veyrac A, Giannetti N, Charrier E, Reymond-Marron I, Aguera M, Rogemond V, Honnorat J, Jourdan F (2005) Expression of collapsin response mediator proteins 1, 2 and 5 is differentially regulated in newly generated and mature neurons of the adult olfactory system. Eur J Neurosci 21:2635–2648

    Article  PubMed  Google Scholar 

  • Vianey-Liaud C, Divry P, Gregersen N, Mathieu M (1987) The inborn errors of mitochondrial fatty acid oxidation. J Inherit Metabol Dis 10:159–200

    Article  Google Scholar 

  • Wahner AD, Bronstein JM, Bordelon YM, Ritz B (2008) Statin use and the risk of Parkinson disease. Neurology 70:1418–1422

    Article  PubMed  CAS  Google Scholar 

  • Wakayama Y, Shibuya S, Kawase J, Sagawa F, Hashizume Y (1987) High neuron-specific enolase level of cerebrospinal fluid in the early stage of Creutzfedt-Jakob disease. Klin Wochenschr 65:798–801

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Nguyen M, Xiao-Fen Qin F, Tong Q (2007) SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Ageing Cell 6:505–514

    Article  CAS  Google Scholar 

  • Weinkauf M, Hiddemann W, Dreyling M (2006) Sample pooling in 2-D gel electrophoresis: a new approach to reduce non-specific expression background. Electrophoresis 27:4555–4558

    Article  PubMed  CAS  Google Scholar 

  • Weitzdoerfer R, Fountoulakis M, Lubec G (2001) Aberrant expression of dihydropyrimidinase-related proteins-2,-3 and -4 in fetal Down syndrome brain. J Neural Transm Suppl 1:95–107

    Google Scholar 

  • Werner CJ, Heyny-von Haussen R, Mall G, Wolf S (2008) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteome Sci 6:8

    Article  PubMed  CAS  Google Scholar 

  • Wilm M, Shevshenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T, Mann M (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379:466–469

    Article  PubMed  CAS  Google Scholar 

  • Woodlee MT, Asseo-Garcia AM, Zhao X, Liu SJ, Jones TA, Schallert T (2005) Testing forelimb placing across the midline reveals distinct, lesion-dependent patterns of recovery in rats. Exp Neurol 191:310–317

    Article  PubMed  Google Scholar 

  • Zhang X, Rojas JC, Gonzalez-Lima F (2006) Methylene blue prevents neurodegeneration caused by rotenone in the retina. Neurotox Res 9:47–57

    Article  PubMed  Google Scholar 

  • Zhu X, Perry G, Moreira PI, Giumrakch A, Cash AD, Hirai K, Smith MA (2006) Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. J Alzheimers Dis 9:147–153

    PubMed  Google Scholar 

Download references

Acknowledgments

I·P. is supported by a John G. Nicholls Post-Doctoral Research Fellowship, awarded by the International Brain Research Organisation. The financial assistance of the National Research Foundation (NRF) of South Africa toward this research is hereby also acknowledged. The help provided by Prof. Martin Kidd from the Department of Statistics, University of Stellenbosch, for statistically analyzing the data is appreciated. We also thank Dr. Leanne Loijens from Noldus in the Netherlands for helping to set up the behavior tracking software. We thank Lorren Fairbairn for providing technical assistance. We also thank the Davis Phinney Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilse S. Pienaar.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00702-009-0280-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pienaar, I.S., Schallert, T., Hattingh, S. et al. Behavioral and quantitative mitochondrial proteome analyses of the effects of simvastatin: implications for models of neural degeneration. J Neural Transm 116, 791–806 (2009). https://doi.org/10.1007/s00702-009-0247-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0247-4

Keywords

Navigation