Skip to main content
Log in

Reductions in qEEG slowing over 1 year and after treatment with Cerebrolysin in patients with moderate–severe traumatic brain injury

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Changes in quantitative EEG (qEEG) recordings over a 1-year period and the effects of Cerebrolysin (Cere) on qEEG slowing and cognitive performance were investigated in postacute moderate–severe traumatic brain injury (TBI) patients. Time-related changes in qEEG activity frequency bands (increases of alpha and beta, and reductions of theta and delta relative power) and in qEEG slowing (reduction of EEG power ratio) were statistically significant in patients with a disease progress of less than 2 years at baseline, but not in those patients having a longer disease progress time. Slowing of qEEG activity was also found to be significantly reduced in TBI patients after 1 month of treatment with Cere and 3 months later. Therefore, Cere seems to accelerate the time-related reduction of qEEG slowing occurring in untreated patients. The decrease of qEEG slowing induced by Cere correlated with the improvement of attention and working memory. Results of this exploratory study suggest that Cere might improve the functional recovery after brain injury and encourage the conduction of further controlled clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akay F, Hiruma S, Sato T, Iwamoto N, Fujimoto M, Ioku M, Hasimoto S (1992) Neurotrophic factor-like effect of EPF1070 on septal cholinergic neurons after transections of fimbria-fornix in the rat brain. Histol Histopathol 7:213–221

    Google Scholar 

  • Albrecht E, Hingel S, Crailsheim K, Windisch M (1993) The effects of cerebrolysin on survival and sprouting of neurons from cerebral hemispheres and from the brainstem of chick embryos in vitro. Adv Biosci 87:341–342

    CAS  Google Scholar 

  • Álvarez XA, Fernández-Novoa L, Sanpedro C, Lombarda V, Windisch M, Cacabelos R (1999a) Neuroimmunotrophic effects of Cerebrolysin in an animal model of hipocampal degeneration induced by ß-Amyloid. In: Korczyn AD (ed) Vascular dementia. Monduzzi Editore, Bologna, pp 233–237

    Google Scholar 

  • Álvarez XA, Mouzo R, Pichel V, Pérez P, Laredo M, Fernández-Novoa L, Corzo L, Zas R, Alcaraz M, Secades JJ, Lozano R, Cacabelos R (1999b) Double-blind placebo-controlled study with Citicoline in APOE genotyped Alzheimer’s disease patients. Effects on cognitive performance, brain bioelectrical activity and cerebral perfusion. Methods Find Exp Clin Pharmacol 21:633–644

    Article  PubMed  Google Scholar 

  • Álvarez XA, Lombardi V, Corzo L, Pérez P, Pichel V, Laredo M, Hernández A, Freixeiro F, Sanpedro C, Lorenzo R, Alcaraz M, Windisch M, Cacabelos R (2000a) Oral Cerebrolysin enhances brain alpha activity and improves cognitive performance in elderly control subjects. J Neural Transm Suppl 59:315–328

    PubMed  Google Scholar 

  • Álvarez XA, Lombardi V, Fernández-Novoa L, García M, Sanpedro C, Cagiao A, Cacabelos C, Windisch M (2000b) Cerebrolysin reduces microglial activation in vivo and in vitro: a potential mechanism of neuroprotection. J Neural Transm Suppl 59:281–292

    PubMed  Google Scholar 

  • Alvarez XA, Sanpedro C, Perez P, Laredo M, Cruceiro V, Hernandez A, Figueroa J, Varela M, Arias D, Corzo L, Zas R, Lombardi V, Fernandez-Novoa L, Pichel V, Cacabelos R, Windisch M, Aleixandre M, Moessler H (2003) Positive effects of cerebrolysin on electroencephalogram slowing, cognition and clinical outcome in patients with postacute traumatic brain injury: an exploratory study. Int Clin Psychopharmacol 18:271–278

    Article  PubMed  Google Scholar 

  • Álvarez XA, Cacabelos R, Laredo M, Couceiro V, Sampedro C, Varela M, Corzo L, Fernández-Novoa L, Vargas M, Aleixandre M, Illescas E, Linares C, Granizo E, Dafin M, Moessler H (2006) A 24-week, double-blind, placebo-controlled study of three dosages of Cerebrolysin in patients with mild to moderate Alzheimer’s disease. Eur J Neurology 13:46–54

    Article  Google Scholar 

  • Angelakis E, Lubar JF, Stathopoulou S, Kounios J (2004) Peak alpha frequency: an electroencephalographic measure of cognitive preparedness. Clin Neurophysiol 115:887–897

    Article  PubMed  Google Scholar 

  • Axelrod BN, Fichtenberg NL, Liethen PC, Czarnota MA, Stucky K (2001) Performance characteristics of postacute traumatic brain injury patients on the WAIS-III and WMS-III. Clin Neuropsychol 15:516–520

    Article  PubMed  CAS  Google Scholar 

  • Bae CY, Cho CY, Cho K, Hoon Oh B, Choi KG, Lee HS, Jung SP, Kim DH, Lee S, Choi GD, Cho H, Lee H (2000) A double-blind, placebo-controlled, multicenter study of Cerebrolysin for Alzheimer’s disease. J Am Geriatr Soc 48:1566–1571

    PubMed  CAS  Google Scholar 

  • Berger RP, Pierce MC, Wisniewski SR, Adelson PD, Kochanek PM (2002) Serum S100B concentrations are increased after closed head injury in children: a preliminary study. J Neurotrauma 19:1405–1409

    Article  PubMed  Google Scholar 

  • Boado R, Dafang W, Windisch M (1999) In vivo upregulation of the blood-brain barrier GLUT-1 glucose transporter by brain-derived peptides. Neurosci Res 34:217–224

    Article  PubMed  CAS  Google Scholar 

  • Boly M, Faymonville ME, Peigneux P, Lambermont B, Damas P, Del Fiore G, Degueldre C, Franck G, Luxen A, Lamy M, Moonen G, Maquet P, Laureys S (2004) Auditory processing in severely brain injured patients: differences between the minimally conscious state and the persistent vegetative state. Arch Neurol 61:233–238

    Article  PubMed  Google Scholar 

  • Cacabelos R, Caamaño J, Gómez MJ, Fernández-Novoa L, Franco-Maside A, Álvarez XA (1996) Therapeutic effects of CDP-Choline in Alzheimer’s disease. Cognition, brain mapping, cerebrovascular hemodynamics, and immune factors. Ann NY Acad Sci 777:399–403

    Article  PubMed  CAS  Google Scholar 

  • Chiaretti A, Piastra M, Polidori G, Di Rocco C, Caresta E, Antonelli A, Amendola T, Aloe L (2003) Correlation between neurotrophic factor expression and outcome of children with severe traumatic brain injury. Intensive Care Med 29:1329–1338

    Article  PubMed  Google Scholar 

  • Coles JP, Steiner LA, Johnston AJ, Fryer TD, Coleman MR, Smieleweski P, Chatfield DA, Aigbirhio F, Williams GB, Boniface S, Rice K, Clark JC, Pickard JD, Menon DK (2004) Does induced hypertension reduce cerebral ischaemia within the traumatized human brain? Brain 127:2479–2490

    Article  PubMed  Google Scholar 

  • Csuka E, Morganti-Kossmann MC, Lenzlinger PM, Joller H, Trentz O, Kossmann T (1999) IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood-brain barrier function. J Neuroimmunol 101:211–221

    Article  PubMed  CAS  Google Scholar 

  • Emmerling MR, Morganti-Kossmann MC, Kossmann T, Stahel PF, Watson MD, Evans LM, Mehta PD, Spiegel K, Kuo YM, Roher AE, Raby CA (2000) Traumatic brain injury elevates the Alzheimer’s amyloid peptide A beta 42 in human CSF. A possible role for nerve cell injury. Ann NY Acad Sci 903:118–122

    Article  PubMed  CAS  Google Scholar 

  • Faden AI (2002) Neuroprotection and traumatic brain injury: theoretical option or realistic proposition. Curr Opin Neurol 15:707–712

    Article  PubMed  Google Scholar 

  • Funke M, Fiehler J, Mewes I, Eiselt M, Rother I, Windisch M (1998) Dose-dependent effects of Cerebrolysin on EEG and Short term memory in healthy volunteers during control and hyperventilation induced cerebral ischemia. J Neural Transm Suppl 53:385–398

    PubMed  CAS  Google Scholar 

  • Gschanes A, Windisch M (1998) The influence of Cerebrolysin and E021 on spatial navigation of 24-month-old rats. J Neural Transm 53:313–321

    CAS  Google Scholar 

  • Hutter-Paier B, Grygar E, Windisch M (1996) Death of cultured telencephalon neurons induced by glutamate is reduced by the peptide derivative cerebrolysin. J Neural Transm 47:267–273

    CAS  Google Scholar 

  • Hutter-Paier B, Steiner E, Windisch M (1998) Cerebrolysin protects isolated neurons from neurodegeneration after brief histotoxic hypoxia. J Neural Transm Suppl 53:351–361

    PubMed  CAS  Google Scholar 

  • Jennett B, Bond M (1975) Assessment of outcome after severe brain damage. A practical scale. Lancet 1:480–484

    Article  PubMed  CAS  Google Scholar 

  • Kane NM, Moss TH, Curry SH, Butler SR (1998) Quantitative electro-encephalographic evaluation of non-fatal and fatal traumatic coma. Electroencephalogr Clin Neurophysiol 106:244–250

    Article  PubMed  CAS  Google Scholar 

  • Kazanis I, Giannakopoulou M, Philippidis H, Stylianopoulou F (2004) Alterations in IGF-I, BDNF and NT-3 levels following experimental brain trauma and the effect of IGF-I administration. Exp Neurol 186:221–234

    Article  PubMed  CAS  Google Scholar 

  • Kersel DA, Marsh NV, Havill JH, Sleigh JW (2001) Neuropsychological functioning during the year following severe traumatic brain injury. Brain Inj 15:283–296

    Article  PubMed  CAS  Google Scholar 

  • Leclercq PD, McKenzie JE, Graham DI, Gentleman SM (2001) Axonal injury is accentuated in the caudal corpus callosum of head-injured patients. J Neurotrauma 18:1–9

    Article  PubMed  CAS  Google Scholar 

  • Lew HL, Lee EH, Pan SS, Date ES (2004) Electrophysiologic abnormalities of auditory and visual information processing in patients with traumatic brain injury. Am J Phys Med Rehabil 83:428–433

    Article  PubMed  Google Scholar 

  • Lombardi VRM, Windisch M, García M, Cacabelos R (1999) Effects of Cerebrolysin on in vitro primary microglial and astrocyte rat cell cultures. Methods Find Exp Pharmacol 21:331–338

    Article  CAS  Google Scholar 

  • Longhi L, Watson DJ, Saatman KE, Thompson HJ, Zhang C, Fujimoto S, Royo N, Castelbuono D, Raghupathi R, Trojanowski JQ, Lee VM, Wolfe JH, Stocchetti N, McIntosh TK (2004) Ex vivo gene therapy using targeted engraftment of NGF-expressing human NT2N neurons attenuates cognitive deficits following traumatic brain injury in mice. J Neurotrauma 21:1723–1736

    PubMed  Google Scholar 

  • Magnoni S, Stocchetti N, Colombo G, Carling A, Colombo A, Lipton JM, Catania A (2003) Alpha-melanocyte-stimulating hormone is decreased in plasma of patients with acute brain injury. J Neurotrauma 20:251–260

    Article  PubMed  Google Scholar 

  • Masliah E, Armasolo F, Veinbergs I, Mallory M, Samuel W (1999) Cerebrolysin ameliorates performance deficits, and neuronal damage in apolipoprotein E-deficient mice. Pharmacol Biochem Behav 62:239–245

    Article  PubMed  CAS  Google Scholar 

  • Nagata K, Tagawa K, Hiroi S, Shishido F, Uemura K (1989) Electroencephalographic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction. Electroencephalogr Clin Neurophysiol 72:16–30

    Article  PubMed  CAS  Google Scholar 

  • Overall JE, Schaltenbrand R (1992) The SKT neuropsychological test battery. J Geriatr Psychiatry Neurol 5:220–227

    PubMed  CAS  Google Scholar 

  • Panisset M, Gauthier S, Moessler H, Windisch M (2002) Cerebrolysin in Alzheimer’s disease: a ramdomized, double-blind, placebo-controlled trial with a neurotrophic agent. J Neural Transm 109:1089–1104

    Article  PubMed  CAS  Google Scholar 

  • Rapoport M, McCauley S, Levin H, Song J, Feinstein A (2002) The role of injury severity in neurobehavioral outcome 3 months after traumatic brain injury. Neuropsychiatry Neuropsychol Behav Neurol 15:123–132

    PubMed  Google Scholar 

  • Ray SK, Dixon CE, Banik NL (2002) Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histopathol 17:1137–1152

    PubMed  CAS  Google Scholar 

  • Reinprecht I, Gschanes A, Windisch M, Fachbach G (1999) Two peptidergic drugs increase the synaptophysin immunoreactivity in brains of 24-month-old rats. Histochem J 31:395–401

    Article  PubMed  CAS  Google Scholar 

  • Roche RA, Dockree PM, Garavan H, Foxe JJ, Robertson IH, O’Mara SM (2004) EEG alpha power changes reflect response inhibition deficits after traumatic brain injury (TBI) in humans. Neurosci Lett 362:1–5

    Article  PubMed  CAS  Google Scholar 

  • Rockenstein E, Mallory M, Mante M, Alford M, Windisch M, Moessler H, Masliah E (2002) Effects of Cerebrolysin on amyloid-beta deposition in a transgenic model of Alzheimer’s disease. J Neural Transm Suppl 62:327–336

    PubMed  CAS  Google Scholar 

  • Ruether E, Husmann R, Kinzler E, Diabl E, Klingler D, Spatt J, Ritter R, Schmidt R, Taneri Z, Winterer W, Koper D, Kasper S, Rainer M, Moessler H (2001) A 28-week, double-blind, placebo-controlled study with Cerebrolysin in patients with mild to moderate Alzheimer’s disease. Int Clin Psychopharmacol 16:253–263

    Article  PubMed  CAS  Google Scholar 

  • Ruether E, Álvarez XA, Rainer M, Moessler H (2002) Sustained improvement of cognition and global function in patients with moderately severe Alzheimer’s disease: a double-blind, placebo-controlled study with the neurotrophic agent Cerebrolysin. J Neural Transm Suppl 62:265–275

    PubMed  CAS  Google Scholar 

  • Saletu B, Hitzenberger G, Grünberger J, Anderer P, Zyhlarz G, Linzmayer L, Rameis H (1995) Double-blind placebo-controlled, pharmacokinetic and dynamic studies with 2 new formulations of piracetam (infusion and syrup) under hypoxia in man. Int J Clin Pharmacol Ther 33:249–262

    PubMed  CAS  Google Scholar 

  • Satou T, Itoh T, Fujimoto M, Hashimoto S (1994) Neurotrophic-like effects of FPF-1070 on cultured neurons from chick embryonic dorsal root ganglia. Jpn Pharmacol Ther 22:205–212

    Google Scholar 

  • Savola O, Pyhtinen J, Leino TK, Siitonen S, Niemela O, Hillbom M (2004) Effects of head and extracranial injuries on serum protein S100B levels in trauma patients. J Trauma 56:1229–1234

    PubMed  CAS  Google Scholar 

  • Schwab M, Antonow-Schlorke I, Zwiener U, Bauer R (1998) Brain-derived peptides reduce size of cerebral infarction and loss of MAP2 immunoreactivity after focal ischemia in rats. J Neural Transm Suppl 53:299–311

    PubMed  CAS  Google Scholar 

  • Tatebayashi Y, Lee MH, Li L, Iqbal K, Grundke-Iqbal I (2003) The dentate gyrus neurogenesis: a therapeutic target for Alzheimer´s disease. Acta Neuropathol 105:225–232

    PubMed  CAS  Google Scholar 

  • Teadsdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2:81–84

    Article  Google Scholar 

  • Thatcher RW, North DM, Curtin RT, Walker RA, Biver CJ, Gomez JF, Salazar AM (2001) An EEG severity index of traumatic brain injury. J Neuropsychiatry Clin Neurosci 13:77–87

    PubMed  CAS  Google Scholar 

  • Thornton K (2003) The electrophysiological effects of a brain injury on auditory memory functioning. The QEEG correlates of impaired memory. Arch Clin Neuropsychol 18:363–378

    Article  PubMed  Google Scholar 

  • Valente M, Placidi F, Oliveira AJ, Bigagli A, Morghen I, Proietti R, Gigli GL (2002) Sleep organization pattern as a prognostic marker at the subacute stage of post-traumatic coma. Clin Neurophysiol 113:1798–1805

    Article  PubMed  CAS  Google Scholar 

  • Vespa PM, Boscardin WJ, Hovda DA, McArthur DL, Nuwer MR, Martin NA, Nenov V, Glenn TC, Bergsneider M, Kelly DF, Becker DP (2002) Early and persistent impaired percent alpha variability on continuous electroencephalography monitoring as predictive of poor outcome after traumatic brain injury. J Neurosurg 97:84–92

    PubMed  Google Scholar 

  • Wallace BE, Wagner AK, Wagner EP, McDeavitt JT (2001) A history and review of quantitative electroencephalography in traumatic brain injury. J Head Trauma Rehabil 16:165–190

    Article  PubMed  CAS  Google Scholar 

  • Winter CD, Pringle AK, Clough GF, Church MK (2004) Raised parenchymal interleukin-6 levels correlate with improved outcome after traumatic brain injury. Brain 127:315–320

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from EBEWE Pharma (Austria) and the EuroEspes Company (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Antón Álvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez, X.A., Sampedro, C., Figueroa, J. et al. Reductions in qEEG slowing over 1 year and after treatment with Cerebrolysin in patients with moderate–severe traumatic brain injury. J Neural Transm 115, 683–692 (2008). https://doi.org/10.1007/s00702-008-0024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0024-9

Keywords

Navigation