Skip to main content

Advertisement

Log in

Oxiracetam alleviates anti-inflammatory activity and ameliorates cognitive impairment in the early phase of traumatic brain injury

  • Original Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

We aimed to investigate the effects of oxiracetam on cognitive impairment in the early phase of traumatic brain injury (TBI), for which no specific treatment is currently available.

Methods

The in vitro study used a cell injury controller to damage SH-SY5Y cells and evaluate the effect of oxiracetam at a dosage of 100 nM. The in vivo study used a stereotaxic impactor to induce a TBI model in C57BL/6 J mice and analyzed immunohistochemical changes and cognitive function after an intraperitoneal injection of oxiracetam (30 mg/kg/day) for 5 days. The number of mice used in this study was 60. They were divided into three groups (sham, TBI, and TBI with oxiracetam treatment) (20 mice in each group).

Results

The in vitro study showed that oxiracetam treatment resulted in increased superoxide dismutase (SOD)1 and SOD2 mRNA expression. The mRNA and protein expression of COX-2, NLRP3, caspase-1, and interleukin (IL)-1 β were decreased after oxiracetam treatment, along with decreases in intracellular reactive oxygen species production and apoptotic effects. TBI mice treated with oxiracetam exhibited the loss of fewer cortical damaged lesions, less brain edema, and fewer Fluoro-Jade B (FJB)-positive and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL)-positive cells compared to those without oxiracetam treatment. The mRNA and protein expression of COX-2, NLRP3, caspase-1, and IL-1β were decreased significantly after oxiracetam treatment. These inflammation-related markers, which colocalized with Iba-1-positive or GFAP-positive cells after TBI, were also decreased after oxiracetam treatment. TBI mice treated with oxiracetam had a smaller decrease in preference and more latency time than those not treated with oxiracetam, suggesting the amelioration of impaired cognitive impairment.

Conclusions

Oxiracetam may be helpful in restoring cognitive impairment by ameliorating neuroinflammation in the early phase of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data is available upon possible request.

References

  1. Bae YH, Joo H, Bae J, Hyeon SJ, Her S, Ko E, Choi HG, Ryu H, Hur E, Bu Y, Lee BD (2018) Brain injury induces HIF-1alpha-dependent transcriptional activation of LRRK2 that exacerbates brain damage. Cell Death Dis 9:1125

    Article  PubMed  PubMed Central  Google Scholar 

  2. Baratz R, Tweedie D, Wang JY, Rubovitch V, Luo W, Hoffer BJ, Greig NH, Pick CG (2015) Transiently lowering tumor necrosis factor-alpha synthesis ameliorates neuronal cell loss and cognitive impairments induced by minimal traumatic brain injury in mice. J Neuroinflammation 12:45

    Article  PubMed  PubMed Central  Google Scholar 

  3. Copani A, Genazzani AA, Aleppo G, Casabona G, Canonico PL, Scapagnini U, Nicoletti F (1992) Nootropic drugs positively modulate alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-sensitive glutamate receptors in neuronal cultures. J Neurochem 58:1199–1204

    Article  CAS  PubMed  Google Scholar 

  4. Ding Y, Fu X, Wang Q, Liu H, Wang H, Wu D (2021) The Complex Interplay between Autophagy and NLRP3 Inflammasome in Renal Diseases. Int J Mol Sci 22

  5. Einarsen CE, van der Naalt J, Jacobs B, Follestad T, Moen KG, Vik A, Haberg AK, Skandsen T (2018) Moderate Traumatic Brain Injury: Clinical Characteristics and a Prognostic Model of 12-Month Outcome. World Neurosurg 114:e1199–e1210

    Article  PubMed  Google Scholar 

  6. Fordyce DE, Clark VJ, Paylor R, Wehner JM (1995) Enhancement of hippocampally-mediated learning and protein kinase C activity by oxiracetam in learning-impaired DBA/2 mice. Brain Res 672:170–176

    Article  CAS  PubMed  Google Scholar 

  7. Fu C, Zhang X, Zeng Z, Tian Y, Jin X, Wang F, Xu Z, Chen B, Zheng H, Liu X (2020) Neuroprotective Effects of Qingnao Dripping Pills Against Cerebral Ischemia via Inhibiting NLRP3 Inflammasome Signaling Pathway: In Vivo and In Vitro. Front Pharmacol 11:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gonzalez-Reyes RE, Nava-Mesa MO, Vargas-Sanchez K, Ariza-Salamanca D, Mora-Munoz L (2017) Involvement of Astrocytes in Alzheimer’s Disease from a Neuroinflammatory and Oxidative Stress Perspective. Front Mol Neurosci 10:427

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harrison JL, Rowe RK, O’Hara BF, Adelson PD, Lifshitz J (2014) Acute over-the-counter pharmacological intervention does not adversely affect behavioral outcome following diffuse traumatic brain injury in the mouse. Exp Brain Res 232:2709–2719

    Article  CAS  PubMed  Google Scholar 

  10. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng T, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678

    Article  CAS  PubMed  Google Scholar 

  11. Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J (2017) Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron 95:1246–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jeon JP, Kim S, Kim TY, Han SW, Lim SH, Youn DH, Kim BJ, Hong EP, Park CH, Kim J, Ahn JH, Rhim JK, Park JJ, Kim HC, Kang SH (2021) Association Between Copeptin and Six-Month Neurologic Outcomes in Patients With Moderate Traumatic Brain Injury. Front Neurol 12:749110

    Article  PubMed  Google Scholar 

  13. Kalra S, Malik R, Singh G, Bhatia S, Al-Harrasi A, Mohan S, Albratty M, Albarrati A, TaMBUWALA MM (2022) Pathogenesis and management of traumatic brain injury (TBI): role of neuroinflammation and anti-inflammatory drugs. Inflammopharmacology 30:1153–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim CK, Kim T, Choi IY, Soh M, Kim D, Kim YJ, Jang H, Yang H, Kim JY, Park H, Park SP, Park S, Yu T, Yoon B, Lee S, Hyeon T (2012) Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed Engl 51:11039–11043

    Article  CAS  PubMed  Google Scholar 

  15. Kuo MF, Grosch J, Fregni F, Paulus W, Nitsche MA (2007) Focusing effect of acetylcholine on neuroplasticity in the human motor cortex. J Neurosci 27:14442–14447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuribara H, Tadokoro S (1988) Facilitating effect of oxiracetam and piracetam on acquisition of discrete two-way shuttle avoidance in normal mice. Jpn J Pharmacol 48:494–498

    Article  CAS  PubMed  Google Scholar 

  17. Li JW, Yang DJ, Chen XY, Liang HQ (2013) Protective effect of oxiracetam on traumatic brain injury in rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi 29:298–300

    CAS  PubMed  Google Scholar 

  18. Li W, Liu H, Jiang H, Wang C, Guo Y, Sun Y, Zhao X, Xiong X, Zhang X, Zhang K, Nie Z, Pu X (2017) (S)-Oxiracetam is the Active Ingredient in Oxiracetam that Alleviates the Cognitive Impairment Induced by Chronic Cerebral Hypoperfusion in Rats. Sci Rep 7:10052

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li XX, Liu SH, Zhuang SJ, Guo SF, Pang SL (2020) Effects of oxiracetam combined with ginkgo biloba extract in the treatment of acute intracerebral hemorrhage: A clinical study. Brain Behav 10:e01661

    Article  PubMed  PubMed Central  Google Scholar 

  20. Malik M, Tlustos P (2022) Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs. Nutrients 14

  21. Mochizuki D, Sugiyama S, Shinoda Y (1992) Biochemical studies of oxiracetam (CT-848) on cholinergic neurons. Nihon Yakurigaku Zasshi 99:27–35

    Article  CAS  PubMed  Google Scholar 

  22. Nakata M, Nakagomi T, Maeda M, Nakano-Doi A, Momota Y, Matsuyama T (2017) Induction of Perivascular Neural Stem Cells and Possible Contribution to Neurogenesis Following Transient Brain Ischemia/Reperfusion Injury. Transl Stroke Res 8:131–143

    Article  CAS  PubMed  Google Scholar 

  23. O’Brien WT, Pham L, Symons GF, Monif M, Shultz SR, McDonald SJ (2020) The NLRP3 inflammasome in traumatic brain injury: potential as a biomarker and therapeutic target. J Neuroinflammation 17:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park JS, Kam TI, Lee S, Park H, Oh Y, Kwon SH, Song JJ, Kim D, Kim H, Na DH, Lee KC, Park EJ, Pomper MG, Pletnikova O, Troncoso J, Ko HS, Dawson VL, Dawson TM, Lee S (2021) Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer’s disease. Acta Neuropathol Commun 9:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Patil SS, Sunyer B, Hoger H, Lubec G (2009) Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze. Behav Brain Res 198:58–68

    Article  PubMed  Google Scholar 

  26. Salvador E, Burek M, Forster CY (2018) An In Vitro Model of Traumatic Brain Injury. Methods Mol Biol 1717:219–227

    Article  CAS  PubMed  Google Scholar 

  27. Schimmel SJ, Acosta S, Lozano D (2017) Neuroinflammation in traumatic brain injury: A chronic response to an acute injury. Brain Circ 3:135–142

    Article  PubMed  PubMed Central  Google Scholar 

  28. Skotak M, Wang F, Chandra N (2012) An in vitro injury model for SH-SY5Y neuroblastoma cells: effect of strain and strain rate. J Neurosci Methods 205:159–168

    Article  PubMed  Google Scholar 

  29. Song L, Pei L, Yao S, Wu Y, Shang Y (2017) NLRP3 Inflammasome in Neurological Diseases, from Functions to Therapies. Front Cell Neurosci 11:63

    Article  PubMed  PubMed Central  Google Scholar 

  30. Taverni JP, Seliger G, Lichtman SW (1998) Donepezil medicated memory improvement in traumatic brain injury during post acute rehabilitation. Brain Inj 12:77–80

    Article  CAS  PubMed  Google Scholar 

  31. Tsai YC, Liu CJ, Huang HC, Lin JH, Chen PY, Su YK, Chen CT, Chiu HY (2021) A Meta-analysis of Dynamic Prevalence of Cognitive Deficits in the Acute, Subacute, and Chronic Phases After Traumatic Brain Injury. J Neurosci Nurs 53:63–68

    PubMed  Google Scholar 

  32. Tsolaki M, Pantazi T, Kazis A (2001) Efficacy of acetylcholinesterase inhibitors versus nootropics in Alzheimer’s disease: a retrospective, longitudinal study. J Int Med Res 29:28–36

    Article  CAS  PubMed  Google Scholar 

  33. Wang C, Li F, Guan Y, Zhu L, Fei Y, Zhang J, Pan Y (2014) Bone marrow stromal cells combined with oxiracetam influences the expression of B-cell lymphoma 2 in rats with ischemic stroke. J Stroke Cerebrovasc Dis 23:2591–2597

    Article  PubMed  Google Scholar 

  34. Wang J, Sun R, Li Z, Pan Y (2019) Combined bone marrow stromal cells and oxiracetam treatments ameliorates acute cerebral ischemia/reperfusion injury through TRPC6. Acta Biochim Biophys Sin (Shanghai) 51:767–777

    Article  CAS  PubMed  Google Scholar 

  35. Wortzel HS, Arciniegas DB (2012) Treatment of post-traumatic cognitive impairments. Curr Treat Options Neurol 14:493–508

    Article  PubMed  PubMed Central  Google Scholar 

  36. Youn DH, Tran NM, Kim BJ, Kim Y, Jeon JP, Yoo H (2021) Shape effect of cerium oxide nanoparticles on mild traumatic brain injury. Sci Rep 11:15571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Youn DH, Jung H, Tran NM, Jeon JP, Yoo H (2022) The Therapeutic Role of Nanoparticle Shape in Traumatic Brain Injury : An in vitro Comparative Study. J Korean Neurosurg Soc 65:196–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu TS, Kim A, Kernie SG (2015) Donepezil rescues spatial learning and memory deficits following traumatic brain injury independent of its effects on neurogenesis. PLoS ONE 10:e0118793

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zavadenko NN, Guzilova LS (2009) Sequelae of closed craniocerebral trauma and the efficacy of piracetam in its treatment in adolescents. Neurosci Behav Physiol 39:323–328

    Article  CAS  PubMed  Google Scholar 

  40. Zhang H, Jia L, Jia J (2020) Oxiracetam Offers Neuroprotection by Reducing Amyloid beta-Induced Microglial Activation and Inflammation in Alzheimer’s Disease. Front Neurol 11:623

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zheng RZ, Lee KY, Qi ZX, Wang Z, Xu ZY, Wu XH, Mao Y (2022) Neuroinflammation Following Traumatic Brain Injury: Take It Seriously or Not. Front Immunol 13:855701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is supported by research grants from the Samjin Pharmaceuticals (grant no. 6S190101937S000100), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2022R1A5A8019303), and Hallym University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Min Cho or Jin Pyeong Jeon.

Ethics declarations

Ethics approval

All experiments were approved by the Institutional Animal Care and Use Committee of the participating university (approval no. Hallym2020-51).

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1978 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youn, D.H., Han, S.W., Kim, JT. et al. Oxiracetam alleviates anti-inflammatory activity and ameliorates cognitive impairment in the early phase of traumatic brain injury. Acta Neurochir 165, 2201–2210 (2023). https://doi.org/10.1007/s00701-023-05674-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-023-05674-8

Keywords

Navigation