Skip to main content

Advertisement

Log in

Quantitative Evans index estimation using ultrasonographic measurement of the optic nerve sheath diameter in supine and upright position

  • Original Article - CSF Circulation
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Objectives

We aimed to quantitatively assess Evans index (EI) using ultrasonographic optic nerve sheath diameter (ONSD) measurements in supine and upright position in normal pressure hydrocephalus (NPH) patients.

Methods

Ultrasonographically ONSD was measured in a supine and upright position before and 4–5 days after the ventriculoperitoneal shunt surgery. The changes of the ONSD between supine and upright positions were calculated as ∆ONSD = sONSD-uONSD and as the variation ONSD_V = 100% × [(sONSD − uONSD)/sONSD]. Multiple linear regression analyses were conducted to assess associations between EI and the variation of ONSD. We derived the mathematical function to predict EI. Bland–Altman analysis was applied to evaluate the accuracy and precision of the EI prediction.

Results

Thirteen adult patients (mean age 61.8 ± 11.1 (SD) years; 6 (46%) female) undergone VP shunt implantation for NPH. The mean EI was 0.432 (95% CI, 0.393–0.471) preoperatively and 0.419 (95% CI, 0.373–0.466) postoperatively (p = 0.066). There is a decrease of the ONSD during positional changes from supine to upright position and pre- and postoperative EI correlated with preoperative variation ONSD_V1 (r =  − 0.610 and − 0.648, p < 0.05). The mathematical function for preoperative EI estimation was EIpreop = 0.504 − 0.022 × ONSD_V1 + 0.101 × gender (M = 0; W = 1), (Durbin-Watson value = 1.94), and for postoperative was EIpostop = 0.487 − 0.022 × ONSD_V1 + 0.117 × gender; (Durbin-Watson value 2.23).

Conclusions

Ultrasonographic ONSD measurements in supine and upright position provide a potential method to quantify EI that can be conducted at the bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

∆ONSD:

sONSD–uONSD

CSF:

Cerebrospinal fluid

CT:

Computer tomography

D-W:

Durbin-Watson statistic

EI:

Evans index

ETV:

Endoscopic third ventriculostomy

ICP:

Intracranial pressure

iNPH:

Idiopathic normal pressure hydrocephalus

LCL:

Lower confidence limit

LOA:

Limits of agreement

MRI:

Magnetic resonance imaging

NPH:

Normal pressure hydrocephalus

ONSD:

Optic nerve sheath diameter

ONSD_V:

Variation of ONSD

ONSD_V1:

Preoperative variation of ONSD

ONSD_V2:

Postoperative variation of ONSD

SD:

Standard deviation

SE:

Standard error

sONSD:

ONSD in supine

UCL:

Upper confidence limit

uONSD:

ONSD in upright

US:

Ultrasound system

VP shunt:

Ventriculoperitoneal shunt

References

  1. Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH (1965) Symptomatic occult hydrocephalus with “normal” cerebrospinal-fluid pressure. A treatable syndrome. N Engl J Med 273:117–126. https://doi.org/10.1056/NEJM196507152730301

    Article  CAS  PubMed  Google Scholar 

  2. Agerskov S, Wallin M, Hellström P, Ziegelitz D, Wikkelsö C, Tullberg M (2019) Absence of Disproportionately Enlarged Subarachnoid Space Hydrocephalus, a Sharp Callosal Angle, or Other Morphologic MRI Markers Should Not Be Used to Exclude Patients with Idiopathic Normal Pressure Hydrocephalus from Shunt Surgery. AJNR Am J Neuroradiol 40(1):74–79. https://doi.org/10.3174/ajnr.A5910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alvi MA, Brown D, Yolcu Y et al (2021) Prevalence and trends in management of idiopathic normal pressure hydrocephalus in the United States: Insights from the national inpatient sample. World Neurosurg 145:e38–e52. https://doi.org/10.1016/j.wneu.2020.09.012

    Article  PubMed  Google Scholar 

  4. Bäuerle J, Schuchardt F, Schroeder L, Egger K, Weigel M, Harloff A (2013) Reproducibility and accuracy of optic nerve sheath diameter assessment using ultrasound compared to magnetic resonance imaging. BMC Neurol 13:187

    Article  Google Scholar 

  5. Bhandari D, Udupi Bidkar P, Adinarayanan S, Narmadhalakshmi K, Srinivasan S (2019) Measurement of changes in optic nerve sheath diameter using ultrasound and computed tomography scan before and after the ventriculoperitoneal shunt surgery in patients with hydrocephalus-A prospective observational trial. Br J Neurosurg 33(2):125–130. https://doi.org/10.1080/02688697.2019.1576856

    Article  PubMed  Google Scholar 

  6. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–1026

    Article  CAS  Google Scholar 

  7. Borgesen SE, Gjerris F (1992) The predictive value of conductance to outflow of cerebrospinal fluid in normal pressure hydrocephalus. Brain 105:65–86

    Article  Google Scholar 

  8. Bradley WG (2016) Magnetic resonance imaging of normal pressure hydrocephalus. Semin Ultrasound CT MR 37(2):120–128. https://doi.org/10.1053/j.sult.2016.01.005

    Article  PubMed  Google Scholar 

  9. Choi SH, Min KT, Park EK, Kim MS, Jung JH, Kim H (2015) Ultrasonography of the optic nerve sheath to assess intracranial pressure changes after ventriculo-peritoneal shunt surgery in children with hydrocephalus: a prospective observational study. Anaesthesia 70(11):1268–1273. https://doi.org/10.1111/anae.13180

    Article  PubMed  Google Scholar 

  10. Damasceno BP (2015) Neuroimaging in normal pressure hydrocephalus. Dement Neuropsychol 9(4):350–355. https://doi.org/10.1590/1980-57642015DN94000350

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ertl M, Aigner R, Krost M et al (2017) Measuring changes in the optic nerve sheath diameter in patients with idiopathic normal-pressure hydrocephalus: a useful diagnostic supplement to spinal tap tests. Eur J Neurol 24(3):461–467. https://doi.org/10.1111/ene.13225

    Article  CAS  PubMed  Google Scholar 

  12. Evans WA (1942) An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neurol Psychiatry 47:931–937

    Article  Google Scholar 

  13. Fichtner J, Ulrich CT, Fung C et al (2019) Sonography of the optic nerve sheath diameter before and after microsurgical closure of a dural CSF fistula in patients with spontaneous intracranial hypotension - a consecutive cohort study. Cephalalgia 39(2):306–315. https://doi.org/10.1177/0333102418793640

    Article  PubMed  Google Scholar 

  14. Hansen HC, Helmke K (1997) Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg 87(1):4–40

    Article  Google Scholar 

  15. Hebb AO, Cusimano MD (2001) Idiopathic normal pressure hydrocephalus: a systematic review of diagnosis and outcome. Neurosurgery 49(5):1166–84; discussion 1184–6. https://doi.org/10.1097/00006123-200111000-00028

  16. Kim DH, Jun JS, Kim R (2018) Measurement of the optic nerve sheath diameter with magnetic resonance imaging and its association with eyeball diameter in healthy adults. J Clin Neurol 14(3):345–350. https://doi.org/10.3988/jcn.2018.14.3.345

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lochner P, Czosnyka M, Naldi A et al (2019) Optic nerve sheath diameter: present and future perspectives for neurologists and critical care physicians. Neurol Sci 40:2447–2457. https://doi.org/10.1007/s10072-019-04015-x

    Article  PubMed  Google Scholar 

  18. Lotan E, Damadian BE, Rusinek H et al (2021) Quantitative imaging features predict spinal tap response in normal pressure hydrocephalus. Neuroradiology. https://doi.org/10.1007/s00234-021-02782-z

    Article  PubMed  Google Scholar 

  19. Marmarou A, Young HF, Aygok GA (2007) Estimated incidence of normal pressure hydrocephalus and shunt outcome in patients residing in assisted-living and extended-care facilities. Neurosurg Focus 22(4):E1. https://doi.org/10.3171/foc.2007.22.4.2

    Article  PubMed  Google Scholar 

  20. Mori E, Ishikawa M, Kato T, Kazui H, Miyake H, Miyajima M, Nakajima M, Hashimoto M, Kuriyama N, Tokuda T, Ishii K, Kaijima M, Hirata Y, Saito M, Arai H; Japanese Society of Normal Pressure Hydrocephalus (2012) Guidelines for management of idiopathic normal pressure hydrocephalus: second edition. Neurol Med Chir (Tokyo) 52(11):775–809. https://doi.org/10.2176/nmc.52.775

  21. Nakajima M, Yamada S, Miyajima M et al (2021) Guidelines for management of idiopathic normal pressure hydrocephalus (third edition): endorsed by the japanese society of normal pressure hydrocephalus. Neurol Med Chir (Tokyo) 61:63–97. https://doi.org/10.2176/nmc.st.2020-0292

    Article  Google Scholar 

  22. Neikter J, Agerskov S, Hellström P et al (2020) Ventricular volume is more strongly associated with clinical improvement than the Evans index after shunting in idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol 41(7):1187–1192. https://doi.org/10.3174/ajnr.A6620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ng SE, Low AM, Tang KK, Chan YH, Kwok RK (2009) Value of quantitative MRI biomarkers (Evans’ index, aqueductal flow rate, and apparent diffusion coefficient) in idiopathic normal pressure hydrocephalus. J Magn Reson Imaging 30(4):708–715. https://doi.org/10.1002/jmri.21865

    Article  PubMed  Google Scholar 

  24. Ohle R, McIsaac SM, Woo MY, Perry JJ (2015) Sonography of the optic nerve sheath diameter for detection of raised intracranial pressure compared to computed tomography: A systematic review and meta-analysis. J Ultrasound Med 34(7):1285–1294. https://doi.org/10.7863/ultra.34.7.1285

    Article  PubMed  Google Scholar 

  25. Padayachy LC, Kilborn T, Carrara H, Figaji AA, Fieggen GA (2015) Change in optic nerve sheath diameter as a radiological marker of outcome from endoscopic third ventriculostomy in children. Childs Nerv Syst 31(5):721–728. https://doi.org/10.1007/s00381-015-2655-0

    Article  PubMed  Google Scholar 

  26. Qvarlander S, Sundström N, Malm J, Eklund A (2013) Postural effects on intracranial pressure: modeling and clinical evaluation. J Appl Physiol 115(10):1474–1480. https://doi.org/10.1152/japplphysiol.00711.20

  27. Raftopoulos C, Deleval J, Chaskis C et al (1994) Cognitive recovery in idiopathic normal pressure hydrocephalus: a prospective study. Neurosurgery 35(3):397–404; discussion 404–5. https://doi.org/10.1227/00006123-199409000-00006.

  28. Reinard K, Basheer A, Phillips S et al (2015) Simple and reproducible linear measurements to determine ventricular enlargement in adults. Surg Neurol Int 6:59. https://doi.org/10.4103/2152-7806.154777

    Article  PubMed  PubMed Central  Google Scholar 

  29. Robba C, Santori G, Czosnyka M et al (2018) Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 44(8):1284–1294. https://doi.org/10.1007/s00134-018-5305-7

    Article  PubMed  Google Scholar 

  30. Toma AK, Holl E, Kitchen ND, Watkins LD (2011) Evans’ index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery 68(4):939–944. https://doi.org/10.1227/NEU.0b013e318208f5e0

    Article  PubMed  Google Scholar 

  31. Toms DA (2006) The mechanical index, ultrasound practices, and the ALARA principle. J Ultrasound Med 25(4):560–1; author reply 561–2. https://doi.org/10.7863/jum.2006.25.4.560

  32. Vaiman M, Abuita R, Bekerman I (2015) Optic nerve sheath diameters in healthy adults measured by computer tomography. Int J Ophthalmol 8(6):1240–1244. https://doi.org/10.3980/j.issn.2222-3959.2015.06.30

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang LJ, Yao Y, Feng LS et al (2017) Noninvasive and quantitative intracranial pressure estimation using ultrasonographic measurement of optic nerve sheath diameter. Sci Rep 7:42063. https://doi.org/10.1038/srep42063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. YokoyamaY YY, Kosugi K et al (2021) Effect of gravity on brain structure as indicated on upright computed tomography. Sci Rep 11:392. https://doi.org/10.1038/s41598-020-79695-z

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mindaugas Urbonas.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the local (Kaunas regional biomedical research) ethics committee (2019–09-09/BE-2–60). All participants gave their informed consent prior to their inclusion in the study.

Consent to participate

Each patient provided written informed consent prior to participation.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

1. We derived the mathematical function to predict Evans index using ultrasonographic optic nerve sheath diameter (ONSD) measurement in supine and upright position.

2. We propose that ultrasonographic measurement of ONSD in two positions provides a potential tool for quantitative evaluation of Evans Index in NPH patients.

3. Combining the results of our study and the data from the literature, we can assume that ultrasonographic measurement of ONSD in two different positions can predict EI and could be used as a screening tool in suspected NPH patients. It could also be used as a simple and effective method for further evaluation of the function of VP shunt after the operation.

This article is part of the Topical Collection on CSF Circulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urbonas, M., Raskauskiene, N., Deltuva, V. et al. Quantitative Evans index estimation using ultrasonographic measurement of the optic nerve sheath diameter in supine and upright position. Acta Neurochir 164, 1755–1764 (2022). https://doi.org/10.1007/s00701-022-05234-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-022-05234-6

Keywords

Navigation