Skip to main content

Advertisement

Log in

Application of a three-dimensional graft of autologous osteodifferentiated adipose stem cells in patients undergoing minimally invasive transforaminal lumbar interbody fusion: clinical proof of concept

  • Original Article - Spine
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

The authors applied a scaffold-free osteogenic three-dimensional (3D) graft made of adipose-derived mesenchymal stem cells (AMSCs) in patients undergoing minimally invasive transforaminal lumbar interbody fusion (MI-TLIF).

Methods

Three patients (two patients and one patient with 1 and 2 levels, respectively) with degenerative spondylolisthesis underwent MI-TLIF with 3D graft made of AMSCs. To obtain the AMSCs, fatty tissue was collected from the abdomen by lipoaspiration and differentiated afterwards in our Cell/Tissue bank. Clinical outcomes, including the Oswestry Disability Index (ODI) and visual analog scale (VAS) as well as fusion status were assessed preoperatively and up to 12 months postoperatively.

Results

At 12 months, all four operated AMSC levels could be assessed (n = 4). Grade 3 fusion could be confirmed at two levels out of four. Mean VAS score improved from 8.3 to 2 and ODI also improved from 47 to 31%. No donor site complication was observed. The final AMSC osteogenic product was stable, did not rupture with forceps manipulation, and was easily implanted directly into the cage with no marked modification of operating time.

Conclusions

A scaffold-free 3D graft made of AMSCs can be manufactured and used as a promising alternative for spinal fusion procedures. Nevertheless, further studies of a larger series of patients are needed to confirm its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F (2007) Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67:9142–9149

    Article  CAS  PubMed  Google Scholar 

  2. Boden SD, Schimandle JH, Hutton WC (1995) An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics. Spine 20:412–420

    Article  CAS  PubMed  Google Scholar 

  3. Cahill KS, Chi JH, Day A, Claus EB (2009) Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA 302:58–66

    Article  CAS  PubMed  Google Scholar 

  4. Dimar JR 2nd, Glassman SD, Burkus JK, Pryor PW, Hardacker JW, Carreon LY (2009) Two-year fusion and clinical outcomes in 224 patients treated with a single-level instrumented posterolateral fusion with iliac crest bone graft. Spine J : Off J N Am Spine Soc 9:880–885

    Article  Google Scholar 

  5. Dimar JR, Glassman SD, Burkus KJ, Carreon LY (2006) Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine 31:2534–2539, discussion 2540

    Article  PubMed  Google Scholar 

  6. Dufrane D, Docquier PL, Delloye C, Poirel HA, Andre W, Aouassar N (2015) Scaffold-free three-dimensional graft from autologous adipose-derived stem cells for large bone defect reconstruction: clinical proof of concept. Medicine (Baltimore) 94:e2220

    Article  CAS  Google Scholar 

  7. Duhoux FP, Ameye G, Lambot V, Herens C, Lambert F, Raynaud S, Wlodarska I, Michaux L, Roche-Lestienne C, Labis E, Taviaux S, Chapiro E, Nguyen-Khac F, Struski S, Dobbelstein S, Dastugue N, Lippert E, Speleman F, Van Roy N, De Weer A, Rack K, Talmant P, Richebourg S, Mugneret F, Tigaud I, Mozziconacci MJ, Laibe S, Nadal N, Terre C, Libouton JM, Decottignies A, Vikkula M, Poirel HA, Groupe Francophone de Cytogenetique H, Belgian Cytogenetic Group for H, Oncology (2011) Refinement of 1p36 alterations not involving PRDM16 in myeloid and lymphoid malignancies. PLoS One 6:e26311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Epstein NE (2013) Complications due to the use of BMP/INFUSE in spine surgery: the evidence continues to mount. Surg Neurol Int 4:S343–352

    Article  PubMed  PubMed Central  Google Scholar 

  9. Epstein NE, Epstein JA (2007) SF-36 outcomes and fusion rates after multilevel laminectomies and 1 and 2-level instrumented posterolateral fusions using lamina autograft and demineralized bone matrix. J Spinal Disord Tech 20:139–145

    Article  PubMed  Google Scholar 

  10. Fischer CR, Cassilly R, Cantor W, Edusei E, Hammouri Q, Errico T (2013) A systematic review of comparative studies on bone graft alternatives for common spine fusion procedures. Eur Spine J : Off Publ Eur Spine Soc, Eur Spinal Deformity Soc, Eur Sect Cervical Spine Res Soc 22:1423–1435

    Article  Google Scholar 

  11. Fischgrund JS, Mackay M, Herkowitz HN, Brower R, Montgomery DM, Kurz LT (1997) 1997 Volvo Award winner in clinical studies. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine 22:2807–2812

    Article  CAS  PubMed  Google Scholar 

  12. Glassman SD, Dimar JR, Carreon LY, Campbell MJ, Puno RM, Johnson JR (2005) Initial fusion rates with recombinant human bone morphogenetic protein-2/compression resistant matrix and a hydroxyapatite and tricalcium phosphate/collagen carrier in posterolateral spinal fusion. Spine 30:1694–1698

    Article  PubMed  Google Scholar 

  13. Hsu WK, Nickoli MS, Wang JC, Lieberman JR, An HS, Yoon ST, Youssef JA, Brodke DS, McCullough CM (2012) Improving the clinical evidence of bone graft substitute technology in lumbar spine surgery. Global Spine J 2:239–248

    Article  PubMed  PubMed Central  Google Scholar 

  14. Joseph V, Rampersaud YR (2007) Heterotopic bone formation with the use of rhBMP2 in posterior minimal access interbody fusion: a CT analysis. Spine 32:2885–2890

    Article  PubMed  Google Scholar 

  15. Kang J, An H, Hilibrand A, Yoon ST, Kavanagh E, Boden S (2012) Grafton and local bone have comparable outcomes to iliac crest bone in instrumented single-level lumbar fusions. Spine 37:1083–1091

    Article  PubMed  Google Scholar 

  16. Keller EE, Triplett WW (1987) Iliac bone grafting: review of 160 consecutive cases. J Oral Maxillofacial Surg: Off J Am Assoc Oral Maxillofac Surg 45:11–14

    Article  CAS  Google Scholar 

  17. Khashan M, Inoue S, Berven SH (2013) Cell based therapies as compared to autologous bone grafts for spinal arthrodesis. Spine 38:1885–1891

    Article  PubMed  Google Scholar 

  18. Lee SC, Chen JF, Wu CT, Lee ST (2009) In situ local autograft for instrumented lower lumbar or lumbosacral posterolateral fusion. J Clin Neurosci: Off J Neurosurg Soc Australasia 16:37–43

    Article  Google Scholar 

  19. Luo X, Chen J, Song WX, Tang N, Luo J, Deng ZL, Sharff KA, He G, Bi Y, He BC, Bennett E, Huang J, Kang Q, Jiang W, Su Y, Zhu GH, Yin H, He Y, Wang Y, Souris JS, Chen L, Zuo GW, Montag AG, Reid RR, Haydon RC, Luu HH, He TC (2008) Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Lab Inv; J Tech Methods Pathol 88:1264–1277

    Article  CAS  Google Scholar 

  20. Mannion RJ, Nowitzke AM, Wood MJ (2011) Promoting fusion in minimally invasive lumbar interbody stabilization with low-dose bone morphogenic protein-2--but what is the cost? Spine J : Off J N Am Spine Soc 11:527–533

    Article  Google Scholar 

  21. Meyer RA Jr, Gruber HE, Howard BA, Tabor OB Jr, Murakami T, Kwiatkowski TC, Wozney JM, Hanley EN Jr (1999) Safety of recombinant human bone morphogenetic protein-2 after spinal laminectomy in the dog. Spine 24:747–754

    Article  PubMed  Google Scholar 

  22. Meza-Zepeda LA, Noer A, Dahl JA, Micci F, Myklebost O, Collas P (2008) High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. J Cell Mol Med 12:553–563

    Article  CAS  PubMed  Google Scholar 

  23. Mindea SA, Shih P, Song JK (2009) Recombinant human bone morphogenetic protein-2-induced radiculitis in elective minimally invasive transforaminal lumbar interbody fusions: a series review. Spine 34:1480–1484, discussion 1485

    Article  PubMed  Google Scholar 

  24. Ohtori S, Suzuki M, Koshi T, Takaso M, Yamashita M, Yamauchi K, Inoue G, Orita S, Eguchi Y, Ochiai N, Kishida S, Kuniyoshi K, Nakamura J, Aoki Y, Ishikawa T, Arai G, Miyagi M, Kamoda H, Toyone T, Takahashi K (2011) Single-level instrumented posterolateral fusion of the lumbar spine with a local bone graft versus an iliac crest bone graft: a prospective, randomized study with a 2-year follow-up. Eur Spine J : Off Publ Eur Spine Soc, Eur Spinal Deformity Soc, Eur Sect Cervical Spine Res Soc 20:635–639

    Article  Google Scholar 

  25. Perrot P, Rousseau J, Bouffaut AL, Redini F, Cassagnau E, Deschaseaux F, Heymann MF, Heymann D, Duteille F, Trichet V, Gouin F (2010) Safety concern between autologous fat graft, mesenchymal stem cell and osteosarcoma recurrence. PLoS One 5:e10999

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  27. Raftopoulos C, Waterkeyn F, Fomekong E, Duprez T (2012) Percutaneous pedicle screw implantation for refractory low back pain: from manual 2D to fully robotic intraoperative 2D/3D fluoroscopy. Adv Tech Stand Neurosurg 38:75–93

    CAS  PubMed  Google Scholar 

  28. Rihn JA, Kirkpatrick K, Albert TJ (2010) Graft options in posterolateral and posterior interbody lumbar fusion. Spine 35:1629–1639

    Article  PubMed  Google Scholar 

  29. Roemeling-van Rhijn M, de Klein A, Douben H, Pan Q, van der Laan LJ, Ijzermans JN, Betjes MG, Baan CC, Weimar W, Hoogduijn MJ (2013) Culture expansion induces non-tumorigenic aneuploidy in adipose tissue-derived mesenchymal stromal cells. Cytotherapy 15:1352–1361

    Article  CAS  PubMed  Google Scholar 

  30. Rubio R, Abarrategi A, Garcia-Castro J, Martinez-Cruzado L, Suarez C, Tornin J, Santos L, Astudillo A, Colmenero I, Mulero F, Rosu-Myles M, Menendez P, Rodriguez R (2014) Bone environment is essential for osteosarcoma development from transformed mesenchymal stem cells. Stem Cells 32:1136–1148

    Article  CAS  PubMed  Google Scholar 

  31. Schimandle JH, Boden SD, Hutton WC (1995) Experimental spinal fusion with recombinant human bone morphogenetic protein-2. Spine 20:1326–1337

    Article  CAS  PubMed  Google Scholar 

  32. Schizas C, Triantafyllopoulos D, Kosmopoulos V, Stafylas K (2009) Impact of iliac crest bone graft harvesting on fusion rates and postoperative pain during instrumented posterolateral lumbar fusion. Int Orthop 33:187–189

    Article  PubMed  Google Scholar 

  33. Schubert T, Lafont S, Beaurin G, Grisay G, Behets C, Gianello P, Dufrane D (2013) Critical size bone defect reconstruction by an autologous 3D osteogenic-like tissue derived from differentiated adipose MSCs. Biomaterials 34:4428–4438

    Article  CAS  PubMed  Google Scholar 

  34. Schubert T, Xhema D, Veriter S, Schubert M, Behets C, Delloye C, Gianello P, Dufrane D (2011) The enhanced performance of bone allografts using osteogenic-differentiated adipose-derived mesenchymal stem cells. Biomaterials 32:8880–8891

    Article  CAS  PubMed  Google Scholar 

  35. Schultz DG (2008) Medical-device safety and the FDA. N Engl J Med 359:88–89, author reply 89

    Article  CAS  PubMed  Google Scholar 

  36. Sengupta DK, Truumees E, Patel CK, Kazmierczak C, Hughes B, Elders G, Herkowitz HN (2006) Outcome of local bone versus autogenous iliac crest bone graft in the instrumented posterolateral fusion of the lumbar spine. Spine 31:985–991

    Article  PubMed  Google Scholar 

  37. Shunwu F, Xing Z, Fengdong Z, Xiangqian F (2010) Minimally invasive transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases. Spine 35:1615–1620

    Article  PubMed  Google Scholar 

  38. Singh K, Ahmadinia K, Park DK, Nandyala SV, Marquez-Lara A, Patel AA, Fineberg SJ (2014) Complications of spinal fusion with utilization of bone morphogenetic protein: a systematic review of the literature. Spine 39:91–101

    Article  PubMed  Google Scholar 

  39. Summers BN, Eisenstein SM (1989) Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br Vol 71:677–680

    CAS  Google Scholar 

  40. Tannoury CA, An HS (2014) Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J: Off J N Am Spine Soc 14:552–559

    Article  Google Scholar 

  41. Thalgott JS, Giuffre JM, Fritts K, Timlin M, Klezl Z (2001) Instrumented posterolateral lumbar fusion using coralline hydroxyapatite with or without demineralized bone matrix, as an adjunct to autologous bone. Spine J: Off J N Am Spine Soc 1:131–137

    Article  CAS  Google Scholar 

  42. Vaccaro AR, Lawrence JP, Patel T, Katz LD, Anderson DG, Fischgrund JS, Krop J, Fehlings MG, Wong D (2008) The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis: a long-term (>4 years) pivotal study. Spine 33:2850–2862

    Article  PubMed  Google Scholar 

  43. Veriter S, Andre W, Aouassar N, Poirel HA, Lafosse A, Docquier PL, Dufrane D (2015) Human adipose-derived mesenchymal stem cells in cell therapy: safety and feasibility in different “hospital exemption” clinical applications. PLoS One 10:e0139566

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang L, Park P, Zhang H, La Marca F, Claeson A, Valdivia J, Lin CY (2011) BMP-2 inhibits the tumorigenicity of cancer stem cells in human osteosarcoma OS99-1 cell line. Cancer Biol Ther 11:457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weinstein JN, Lurie JD, Olson PR, Bronner KK, Fisher ES (2006) United States’ trends and regional variations in lumbar spine surgery: 1992–2003. Spine 31:2707–2714

    Article  PubMed  PubMed Central  Google Scholar 

  46. Werner BC, Li X, Shen FH (2014) Stem cells in preclinical spine studies. Spine J : Off J N Am Spine Soc 14:542–551

    Article  Google Scholar 

  47. Wyles CC, Houdek MT, Crespo-Diaz RJ, Norambuena GA, Stalboerger PG, Terzic A, Behfar A, Sierra RJ (2015) Adipose-derived mesenchymal stem cells are phenotypically superior for regeneration in the setting of osteonecrosis of the femoral head. Clin Orthop Relat Res 473:3080–3090

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yang XF, He X, He J, Zhang LH, Su XJ, Dong ZY, Xu YJ, Li Y, Li YL (2011) High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells. J Biomed Sci 18:59

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zdeblick TA (1993) A prospective, randomized study of lumbar fusion. Prelim Results Spine 18:983–991

    Article  CAS  Google Scholar 

  50. Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26:664–675

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Raftopoulos.

Ethics declarations

Funding

No funding was received for this research.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Comments

This is an interesting and important study. It demonstrates that we can already obtain autologous scaffold-free osteogenic grafts from stem cells of fat tissue. The study also demonstrates that we can do it while avoiding any harvesting site complications and without limitation. Nevertheless, I believe this study, at this present stage, remains a proof-of-concept. There are still issues that need to be clarified before we can consider this technique as a definitive alternative for spinal fusion. Even though the authors, in a previous study (1), reported that no complications occurred in a series of 17 patients during short-term or long-term periods after the implantation of the product, questions concerning the genetic safety of cell therapy need further studies to be definitively answered. Furthermore, a multicentric study, involving many patients will be necessary to assess the clinical value of such stem cells-derived autografts as compared with conventional allograft techniques.

1. Veriter S, Andre W, Aouassar N, Poirel HA, Lafosse A, Docquier PL, Dufrane D (2015) Human Adipose-Derived Mesenchymal Stem Cells in Cell Therapy: Safety and Feasibility in Different “Hospital Exemption” Clinical Applications. PloS one 10:e0139566

Alfredo Conti

Messina, Italy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomekong, E., Dufrane, D., Berg, B.V. et al. Application of a three-dimensional graft of autologous osteodifferentiated adipose stem cells in patients undergoing minimally invasive transforaminal lumbar interbody fusion: clinical proof of concept. Acta Neurochir 159, 527–536 (2017). https://doi.org/10.1007/s00701-016-3051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-016-3051-6

Keywords

Navigation