Skip to main content
Log in

Karyotype revised of Pisum sativum using chromosomal DNA amount

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Pisum sativum was one of the first plants for which the mitotic karyotype was recognized and the karyogram assembled. These achievements were required owing to the physical mapping of P. sativum, providing data for evolutionary approaches and breeding programs. In spite of significant advances, precise morphometric characterization of chromosomes and karyogram assembly of P. sativum have become a topical problem. The present study proposes an unambiguous classification for the chromosomes of P. sativum, based on classical cytogenetic rules and chromosomal DNA amount. Cytogenetic procedure yielded mitotic cells showing morphologically preserved and stoichiometrically stained chromosomes. Twelve mitotic cells were selected, and the mean values for total, short- and long-arm lengths and DNA amount were measured for each chromosome. Chromosomal DNA amount fully correlated with total chromosome length, whose value proportionally decreases with the amount of DNA. Considering these data, all seven chromosomes could be unambiguously identified, yielding a new cytogenetic classification for P. sativum chromosomes. Moreover, the chromosome pairs were ordered according to the classical cytogenetic rule for assembly of karyograms. Since P. sativum is considered a model plant, it was possible to correlate the newly outlined karyotype with other cytogenetic data and linkage groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Blixt S (1958) Cytology of Pisum: II. The normal karyotype. Agric Hort Genet 16:221–237

    Google Scholar 

  • Blixt S (1959) Cytology of Pisum: III. Investigation of five interchange lines and coordination of linkage groups with chromosomes. Agric Hort Genet 17:47–75

    Google Scholar 

  • Carvalho CR, Clarindo WR, Abreu IS (2011) Image cytometry: nuclear and chromosomal DNA quantification. In: Chiarini-Garcia H, Melo RCN (eds) Light microscopy, methods in molecular biology, vol 689. Humana Press, New York, pp 51–68. doi: 10.1007/978-1-60761-950-5_4

  • Clarindo WR, Carvalho CR (2009) Comparison of the Coffea canephora and C. arabica karyotype based on chromosomal DNA content. Plant Cell Rep 28:73–81. doi:10.1007/s00299-008-0621-y

    Article  CAS  PubMed  Google Scholar 

  • Clarindo WR, Carvalho CR, Alves BMG (2007) Mitotic evidence for the tetraploid nature of Glycine max provided by high quality karyograms. Plant Syst Evol 265:101–107. doi:10.1007/s00606-007-0522-5

    Article  Google Scholar 

  • Clarindo WR, Carvalho CR, Mendonça MAC (2012) Cytogenetic and flow cytometry data expanding the knowledge on genome evolution of the three Coffea species. Plant Syst Evol 298:835–844. doi:10.1007/s00606-012-0595-7

    Article  Google Scholar 

  • Cruz CD (1997) Programa GENES—Aplicativo computacional em genética e estatística. Editora UFV, Viçosa

    Google Scholar 

  • Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110. doi:10.1093/aob/mci005

    Article  PubMed  Google Scholar 

  • Doležel J, Greilhuber J, Lucretti SA, Meister A, Lysák MA, Nardi L, Obermayers R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82:17–26. doi:10.1006/anbo.1998.0730

    Article  Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA and genome size of trout and human. Cytometry 51:127–128. doi:10.1002/cyto.a.10013

    Article  PubMed  Google Scholar 

  • Ellis THN, Poyser SJ (2002) An integrated and comparative view of pea genetic and cytogenetic maps. New Phytol 153:17–25. doi:10.1046/j.0028-646X.2001.00302.x

    Article  CAS  Google Scholar 

  • Ellis TH, Turner L, Hellens RP, Lee D, Harker CL, Enard C, Domoney C, Davies DR (1992) Linkage maps in pea. Genetics 130:649–663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freitas DV, Carvalho CR, Nascimento Filho FJ, Astolfi Filho S (2007) Karyotype with 210 chromosomes in guaraná (Paullinia cupana ‘Sorbolis’). J Plant Res 20:344–350. doi:10.1007/s10265-007-0073-4

    Google Scholar 

  • Fuchs J, Kühne M, Schubert I (1998) Assignment of linkage groups to pea chromosomes after karyotyping and gene mapping by fluorescent in situ hybridization. Chromosoma 107:272–276

    Article  CAS  PubMed  Google Scholar 

  • Hall KJ, Parker JS, Ellis THN (1997a) The relationship between genetic and cytogenetic maps of pea. I. Standard and translocation karyotypes. Genome 40:744–754

    Article  CAS  PubMed  Google Scholar 

  • Hall KJ, Parker JS, Ellis TH, Turner L, Knox MR, Hofer JM, Lu J, Ferrandiz C, Hunter PJ, Taylor JD, Baird K (1997b) The relationship between genetic and cytogenetic maps of pea. II. Physical maps of linkage mapping populations. Genome 40:755–769

    Article  CAS  PubMed  Google Scholar 

  • Levan A, Fredga A, Sanderberg AA (1964) Nomenclature for centromeric position in chromosome. Hereditas 52:201–220

    Article  Google Scholar 

  • Murtaza G, Ahmed N, Majid SA (2005) Karyotype analysis of Pisum sativum L. Int J Agric Biol 7:118–120

    Google Scholar 

  • Neumann P, Nouzová M, Macas J (2001) Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). Genome 44:716–728

    Article  CAS  PubMed  Google Scholar 

  • Neumann P, Požárková D, Vrána J, Doležel J, Macas J (2002) Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosome Res 10:63–71. doi:10.1023/A:1014274328269

    Article  CAS  PubMed  Google Scholar 

  • Planchais S, Glabb N, Inzëc D, Bergouniouxb C (2000) Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett 476:78–83. doi:10.1016/S0014-5793(00)01675-6

    Article  CAS  PubMed  Google Scholar 

  • Praça-Fontes MM, Carvalho CR, Clarindo WR (2011) C-value reassessment of plant standards: an image cytometry approach. Plant Cell Rep 30:2303–2312. doi:10.1007/s00299-011-1135-6

    Article  PubMed  Google Scholar 

  • Rosado TB, Clarindo WR, Carvalho CR (2009) An integrated cytogenetic, flow and image cytometry procedure used to measure the DNA content of Zea mays A and B chromosomes. Plant Sci 176:154–158. doi:10.1016/j.plantsci.2008.10.007

    Article  CAS  Google Scholar 

  • Samatadze TE, Muravenko OV, Zelenin AV, Gostimskii AS (2002) Identification of the pea (Pisum sativum L.) genome chromosomes using C-banding analysis. Dokl Biol Sci 387:577–580

    Article  CAS  PubMed  Google Scholar 

  • Samatadze TE, Muravenko OM, Bol’sheva NL, Amosova AB, Gostimsckiĭ SA, Zelenin AV (2005) Investigation of chromosomes in varieties and translocation lines of pea Pisum sativum L. by FISH, Ag-NOR, and differential DAPI staining. Russ J Genet 41:1381–1388

    Article  CAS  Google Scholar 

  • Samatadze TE, Zelenina DA, Shostak NG, Volkov AA, Popov KV, Rachinskaya OV, Borisov AY, Tihonovich IA, Zelenin AV, Muravenko OV (2008) Comparative genome analysis in pea Pisum sativum L. varieties and lines with chromosomal and molecular markers. Russ J Genet 44:1424–1430

    Article  CAS  Google Scholar 

  • Sharma AK, Sharma A (1999) Plant chromosomes: analysis, manipulation and engineering. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  • Singh RJ (1993) The handling of plant chromosomes. In: Singh RJ (ed) Plant cytogenetics. CRC Press, USA, pp 7–24

    Google Scholar 

  • Smýkal P, Aubert G, Burstin J, Coyne CJ, Ellis NTH, Flavell AJ, Ford R, Hýbl M, Macas J, Neumann P, McPhee KE, Redden RJ, Rubiales D, Weller JL, Warkentin TD (2012) Pea (Pisum sativum L.) in the genomic era. Agronomy 2:74–115

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, DF, Brazil), Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG, Belo Horizonte, MG, Brazil), Fundação de Amparo à Pesquisa do Espírito Santo (FAPES, Vitória, ES, Brazil), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília, DF, Brazil) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Roberto Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praça-Fontes, M.M., Carvalho, C.R. & Clarindo, W.R. Karyotype revised of Pisum sativum using chromosomal DNA amount. Plant Syst Evol 300, 1621–1626 (2014). https://doi.org/10.1007/s00606-014-0987-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-0987-y

Keywords

Navigation