Skip to main content
Log in

Genome size and karyotype diversity in Solanum sect. Acanthophora (Solanaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

In order to study the evolution of different cytogenetic characters in species of Solanum sect. Acanthophora in relationship to the known phylogeny for this group, the following techniques were used: CMA/DAPI chromosome banding; fluorescent in situ hybridization with probes for the 18-5.8-26S and the 5S rDNA genes in mitotic chromosomes; nuclear DNA quantification by flow cytometry. Depending on the species, 2–6 of the 12 basic chromosome pairs were identified. The heterochromatic banding patterns were shown to be species-specific. All species presented one chromosome pair bearing a 18-5.8-26S signal and one pair (rarely two) with a 5S signal, the two rDNA sites being non-syntenic. The techniques employed allowed us to establish two species groups within sect. Acanthophora: one with small, symmetric chromosomes, little heterochromatin and lower DNA content, and the other one with larger and more asymmetric chromosomes, more heterochromatin CMA+/DAPI (associated with NOR or not) and a higher DNA content. An elevated karyotype asymmetry would be associated with a high amount of heterochromatin and a high DNA content. The trend within sect. Acanthophora would be towards a loss of heterochromatin, a reduction of chromosome size, and an increase in symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta MC, Bernardello G, Guerra M, Moscone EA (2005) Karyotype analysis in several South American species of Solanum and Lycianthes rantonnei (Solanaceae). Taxon 54:713–723

    Article  Google Scholar 

  • Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot 94:897–911

    Article  CAS  PubMed  Google Scholar 

  • Auler Mentz L, Oliveira PL (2004) Solanum (Solanaceae) na região sul do Brasil. Pesqui Bot 54:1–327

    Google Scholar 

  • Barros e Silva AE, Guerra M (2010) The meaning of DAPI bands observed after C-banding and FISH procedures. Biotech Histochem 85(2):115–125

    Article  CAS  PubMed  Google Scholar 

  • Benko-Iseppon AM, Morawetz W (2000) Cytological comparison of Calyceraceae and Dipsacaceae with special reference to their taxonomic relationships. Cytologia 65:123–128

    Article  Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time. Proc R Soc Lond Biol Sci 181:109–135

    Article  CAS  Google Scholar 

  • Bennett MD (1976) DNA amount, latitude, and crop plant distribution. Environ Exp Bot 16:93–98

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Plant genome size research: a field in focus. Ann Bot 95:1–6

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (2010) Plant DNA C–values Database (release 5.0, December 2010). Available online: http://data.kew.org/cvalues/. Accessed 15 August 2011

  • Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 334:309–345

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ, Hanson L (1998) DNA amounts in two samples of Angiosperm weeds. Ann Bot 82(Suppl A):121–134

    Article  Google Scholar 

  • Bernardello LM, Anderson GJ (1990) Karyotypic studies in Solanum section basarthrum (Solanaceae). Amer J Bot 77:420–431

    Article  Google Scholar 

  • Bogunić F, Siljak-Yakovlev S, Muratović E, Ballian D (2011) Different karyotype patterns among allopatric Pinus nigra (Pinaceae) populations revealed by molecular cytogenetics. Plant Biol (Stuttg) 13(1):194–200

    Article  Google Scholar 

  • Bohs L (2005) Major clades in Solanum based on ndhF sequence data. In: Hollowell V, Keating R, Lewis W, Croat T (eds) A Festschrift for William D’Arcy. Monogr Syst Bot Missouri Bot Gard 104. Missouri Botanical Garden Press, St. Louis, pp 27–50

    Google Scholar 

  • Bryson CT, Byrd JD (1994) Solanum viarum (Solanaceae), new to Mississippi. Sida 16:382–385

    Google Scholar 

  • Bureš P, Wang YF, Horová L, Suda J (2004) Genome size variation in central European species of Cirsium (Compositae) and their natural hybrids. Ann Bot 94:353–363

    Article  PubMed  Google Scholar 

  • Chiarini FE, Auler Mentz L (2012) A new species of Solanum sect. Acanthophora (Solanaceae) from Argentina and Brazil. Phytokeys 18:1–10. doi:10.3897/phytokeys.18.3903

    Article  PubMed  Google Scholar 

  • Chiarini FE, Barboza GE (2009) Fruit anatomy of species of Solanum sect. Acanthophora (Solanaceae). Flora 204:146–156

    Article  Google Scholar 

  • Chiarini FE, Bernardello G (2006) Karyotypic studies in South American species of Solanum subgenus. Leptostemonum (Solanaceae). Plant Biol (Stuttg) 8:486–493

    Article  CAS  Google Scholar 

  • Datson P, Murray B (2006) Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism? Chromosom Res 14:845–857

    Article  CAS  Google Scholar 

  • Dimitrova D, Greilhuber J (2000) Karyotype and DNA-content evolution in ten species of Crepis (Asteraceae) distributed in Bulgaria. Bot J Linn Soc 132:281–297

    Article  Google Scholar 

  • Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85:625–631

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  PubMed  Google Scholar 

  • Dong F, Song J, Naess SK, Helgeson JP, Gebhardt C, Jiang J (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007

    Article  CAS  Google Scholar 

  • Fregonezi JN, Fernandes T, Domingues Torezan JM, Vieira O, Vanzela ALL (2006) Karyotype differentiation of four Cestrum species (Solanaceae) based on the physical mapping of repetitive DNA. Genet Mol Biol 29:97–104

    Article  CAS  Google Scholar 

  • Frello S, Heslop-Harrison JS (2000) Chromosomal Variation in Crocus vernus Hill (Iridaceae) investigated by in situ hybridization of rDNA and a tandemly repeated sequence. Ann Bot 86:317–322

    Article  CAS  Google Scholar 

  • Fuchs J, Stehl S, Brandes A, Schweizer D, Schubert I (1998) Molecular cytogenetic characterization of the Vicia faba genome–heterochromatin differentiation, replication patterns and sequence localization. Chromosom Res 6:219–230

    Article  CAS  Google Scholar 

  • Galasso I, Saponetti LS, Pignone D (1996) Cytotaxonomic studies in Vigna III. Chromosomal distribution and reacting properties of the heterochromatin in five wild species of the section Vigna. Caryologia 49:311–319

    Google Scholar 

  • Garnatje T, Vallès J, García S, Hidalgo O, Sanz M, Canela MA, Siljak-Yakovlev S (2004) Genome size in Echinops L. and related genera (Asteraceae, Cardueae): karyological, ecological and phylogenetic implications. Biol Cell 96:117–124

    Article  CAS  PubMed  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl Acids Res 7:1869–1885

    Article  CAS  PubMed  Google Scholar 

  • Guerra M (2000) Patterns of heterochromatin distribution in plant chromosome. Genet Mol Biol 23:1029–1041

    Article  Google Scholar 

  • Hemleben V, Kovarik A, Torres-Ruiz RA, Volkov RA, Beridze T (2007) Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids. Syst Biodivers 5:277–289

    Article  Google Scholar 

  • Jo SH, Koo DH, Kim JF, Hur CG, Lee S, Yang TJ, Kwon SY, Choi D (2009) Evolution of ribosomal DNA-derived satellite repeat in tomato genome. BMC Plant Biol 9:42

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones RN, Brown LM (1976) Chromosome evolution and DNA variation in Crepis. Heredity 36:91–104

    Article  Google Scholar 

  • Kitamura S, Inoue M, Shikazono N, Tanaka A (2001) Relationships among Nicotiana species revealed by the 5S rDNA spacer sequence and fluorescence in situ hybridization. Theor Appl Genet 103:678–686

    Article  CAS  Google Scholar 

  • Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76

    Article  Google Scholar 

  • Krishnan P, Sapra VT, Soliman KM, Zipf A (2001) FISH mapping of the 5S and 18S–28rDNA loci in different species of Glycine. J Hered 92:282–287

    Article  Google Scholar 

  • Kubešová M, Moravcová L, Suda J, Jarošík V, Pyšek P (2010) Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82:81–96

    Google Scholar 

  • Kwon JK, Kim BD (2009) Localization of 5S and 25S rRNA genes on somatic and meiotic chromosomes in Capsicum species of chili pepper. Mol Cells 27:205–209

    Article  CAS  PubMed  Google Scholar 

  • Lapitan NLV, Ganal MW, Tanksley SD (1991) Organization of the 5S ribosomal RNA genes in the genome of tomato. Genome 34:509–514

    Article  CAS  Google Scholar 

  • Las Peñas ML, Bernardello G, Kiesling R (2008) Karyotypes and fluorescent chromosome banding in Pyrrhocactus (Cactaceae). Pl Syst Evol 272:211–222

    Article  Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York

    Google Scholar 

  • Levin RA, Watson K, Bohs L (2005) A four-gene study of evolutionary relationships in Solanum section Acanthophora. Am J Bot 92:603–612

    Article  CAS  PubMed  Google Scholar 

  • Levin RA, Myers NR, Bohs L (2006) Phylogenetics relationships among the “Spiny Solanums” (Solanum subgenus Leptostemonum, Solanaceae). Am J Bot 93:157–169

    Article  CAS  Google Scholar 

  • Li HY, Chen Q, Beasley D, Lynch DR, Goettel M (2006) Karyotypic evolution and molecular cytogenetic analysis of Solanum pinnatisectum, a new source of resistance to late blight and Colorado potato beetle in potato. Cytologia 71:25–33

    Article  Google Scholar 

  • Lim KY, Matyasek R, Lichtenstein CP, Leitch AR (2000) Molecular cytogenetic analyses and phylogeny of the Nicotiana section Tomentosa. Chromosoma 109:245–258

    Article  CAS  PubMed  Google Scholar 

  • Lysák MA, Doležel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52:123–132

    Article  Google Scholar 

  • McGrath JM, Helgeson JP (1998) Differential behavior of Solanum brevidens ribosomal DNA loci in a somatic hybrid and its progeny with potato. Genome 41:435–439

    CAS  Google Scholar 

  • Melo NF, Guerra M (2003) Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Ann Bot 92:309–316

    Article  PubMed  Google Scholar 

  • Melo CAF, Martins MIG, Oliveira MBM, Benko-Iseppon AM, Carvalho R (2011) Karyotype analysis for diploid and polyploid species of the Solanum L. Plant Syst Evol 293:227–235

    Article  Google Scholar 

  • Miranda M, Ikeda F, Endo T, Morigucki T, Omura M (1997) Comparative analysis on the distribution of heterochromatin in Citrus, Poncirus and Fortunella chromosomes. Chromosom Res 5:86–92

    Article  CAS  Google Scholar 

  • Moscone EA, Lambrou M, Ehrendorfer F (1996) Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae). Plant Syst Evol 202:37–63

    Article  Google Scholar 

  • Moscone EA, Scaldaferro MA, Grabiele M, Cecchini NM, Sanchez García Y, Daviña JR, Ducasse DA, Barboza GE, Ehrendorfer F (2006) The evolution of chili peppers (Capsicum-Solanaceae): a cytogenetic perspective. Acta Hort 745:137–170

    Google Scholar 

  • Nagl W, Ehrendorfer F (1974) DNA content, heterochromatin, mitotic index, and growth in perennial and annual Anthemideae (Asteraceae). Plant Syst Evol 123:35–54

    Article  Google Scholar 

  • Nee M (1991) Synopsis of Solanum Section Acanthophora: A group of interest for glycoalkaloids. In: Hawkes JG, Lester R, Nee M, Estrada N (eds) Solanaceae III: Taxonomy, Chemistry, Evolution. Kew, Royal Botanic Gardens, pp 257–266

    Google Scholar 

  • Ohri D (1998) Genome size variation and plant systematics. Ann Bot 82:75–83

    Article  Google Scholar 

  • Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Crissman HA, Darzynkiewicz Z (eds) Methods in cell biology, vol 33. Academic Press, New York, pp 105–110

    Google Scholar 

  • Palomino G, Sousa SM (2000) Variation of nuclear DNA content in the biflorus species of Lonchocarpus (Leguminosae). Ann Bot 85:69–76

    Article  CAS  Google Scholar 

  • Poggio L, Hunziker JH (1986) Nuclear DNA content variation in Bulnesia. J Hered 77:43–48

    Google Scholar 

  • Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston SJ (2005) Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95:219–227

    Article  CAS  PubMed  Google Scholar 

  • Pringle GJ, Murray BG (1991) Karyotype diversity and nuclear DNA variation in Cyphomandra. In: Hawkes G, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, evolution. Kew, Royal Botanic Gardens, pp 247–252

    Google Scholar 

  • Pringle GJ, Murray BG (1993) Karyotypes and C banding patterns in species of Cyphomandra Mart. ex Sendtn. (Solanaceae). Bot J Linn Soc 111:331–342

    Google Scholar 

  • Rego LNAA, da Silva CRM, Torezan JMD, Gaeta ML, Vanzela ALL (2009) Cytotaxonomical study in Brazilian species of Solanum, Lycianthes and Vassobia (Solanaceae). Plant Syst Evol 279:93–102

    Article  Google Scholar 

  • Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. Bios Scientific Publishers Limited, Oxford

    Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma (Berlin) 58:307–324

    Article  CAS  Google Scholar 

  • Schweizer D, Ambros P (1994) Chromosome banding. In: Gosden JR (ed) Methods in molecular biology, chromosome analysis protocols. Humana Press, Totowa

    Google Scholar 

  • Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C-band patterns. Chromosom Today 9:61–74

    Article  Google Scholar 

  • Sims LE, Price HJ (1985) Nuclear DNA content variation in Helianthus (Asteraceae). Am J Bot 72:1213–1219

    Article  Google Scholar 

  • Šmarda P, Bureš P (2006) Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann Bot 98:665–678

    Article  PubMed  Google Scholar 

  • Srebniak M, Rasmussen O, Małuszyňska J (2002) Cytogenetic analysis of an asymmetric potato hybrid. J Appl Genet 43:19–31

    PubMed  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. E. Arnold, London

    Google Scholar 

  • Tate J, Acosta MC, McDill J, Moscone EA, Simpson BB, Cocucci AA (2009) Phylogeny and character evolution in Nierembergia (Solanaceae): molecular, morphological, and cytogenetic evidence. Syst Bot 34:198–206

    Article  Google Scholar 

  • Urdampilleta JD, Ferrucci MS, Torezan JM, Vanzela ALL (2006) Karyotype relationships among four South American species of Urvillea (Sapindaceae: paullinieae). Plant Syst Evol 258:85–95

    Article  Google Scholar 

  • Wakamiya I, Newton RJ, Johnston SJ, Price JH (1993) Genome size and environmental factors in the genus Pinus. Am J Bot 80:1235–1241

    Article  Google Scholar 

  • Watanabe K, Yahara T, Denda T, Kosuge K (1999) Chromosomal evolution in the genus Brachyscome (Asteraceae, Astereae); statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information. J Plant Res 112:145–161

    Article  Google Scholar 

  • Weese T, Bohs L (2007) A three-gene phylogeny of the genus Solanum (Solanaceae). Syst Bot 32:445–463

    Article  Google Scholar 

  • Welman WG (2003) The genus Solanum (Solanaceae) in Southern Africa: subgenus Leptostemonum, the introduced sections Acanthophora and Torva. Bothalia 33:1–8

    Google Scholar 

  • Zonneveld BJM (2001) Nuclear DNA contents of all species of Helleborus (Ranunculaceae) discriminate between species and sectional divisions. Plant Syst Evol 229:125–130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia FONCyT and SECyT (Universidad Nacional de Córdoba, Argentina) for financial support. Special thanks to Dr. Gregory Wahlert for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Chiarini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiarini, F.E., Santiñaque, F.F., Urdampilleta, J.D. et al. Genome size and karyotype diversity in Solanum sect. Acanthophora (Solanaceae). Plant Syst Evol 300, 113–125 (2014). https://doi.org/10.1007/s00606-013-0864-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0864-0

Keywords

Navigation