Skip to main content
Log in

Taxonomic status and phylogeny of Veratrum section Veratrum (Melanthiaceae) in Korea and Japan based on chloroplast and nuclear sequence data

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Veratrum section Veratrum comprises eight species in Korea and Japan: V. alpestre, V. dahuricum, V. dolichopetalum, V. grandiflorum var. maximum, V. oxysepalum, V. patulum, V. stamineum var. micranthum, and V. stamineum var. stamineum. However, species delimitation and taxonomic treatments have long been controversial due to their highly variable vegetative and floral morphology. We conducted maximum parsimony (MP) and Bayesian inference (BI) based on a total of 4,856 base pairs of nrDNA ITS and cpDNA coding and noncoding regions (matK, psbA-trnH, rpL16, and trnS-G) to re-examine the taxonomic status and phylogenetic relationships within Veratrum sect. Veratrum. The MP and BI trees were poorly resolved among species within Veratrum sect. Veratrum in Korea and Japan. Veratrum stamineum, which has outward spreading, exerted stamens beyond the tepals, diverged first within Veratrum and the remaining species, which have straight shorter stamens compared to the tepals, formed a monophyletic group with poor species delimitation and phylogenetic relationships among them. The incongruent phylogenetic position of V. grandiflorum var. maximum between ITS and cpDNA (it shares its most recent common ancestor with poorly resolved sect. Veratrum species in ITS, whereas it is sister to V. stamineum in cpDNA) suggested that it represents possible ancient hybrid origin between V. stamineum and V. oxysepalum. Thus, in this study we elevated the taxonomic status of V. grandiflorum var. maximum to the species rank, V. maximum. V. alpestre, which was described as a new species by Nakai in 1937, has identical ribotype and cpDNA haplotype of V. oxysepalum and its morphological variations are within the range of V. oxysepalum. Therefore, we suggest that V. alpestre should be synomized with V. oxysepalum. A further study using fast evolving nuclear and chloroplast regions is required to resolve the phylogenetic relationships among species within Veratrum sect. Veratrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest

    Google Scholar 

  • APG [Angiosperm Phylogeny Group] III (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linean Soc 161:105–121

    Article  Google Scholar 

  • Baker JG (1879) A synopsis of Colchicaceae and the aberrant tribes of Liliaceae. Bot J Linean Soc 17:405–510

    Google Scholar 

  • Brummitt RK (2011) Report of the nomenclature committee for vascular plants: 63. Taxon 60(4):1202–1210

    Google Scholar 

  • Chen X, Takahashi H (2000) Veratrum. In: Wu ZY, Raven PH (eds) Flora of China, vol. 24. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis, pp 82–85

  • Chung TH (1956) Korean flora. Sinjisa, Seoul

  • Cunningham CW (1997) Can three incongruence tests predict when data should be combined? Mol Biol Evol 14:733–740

    Article  CAS  PubMed  Google Scholar 

  • Dahlgren RMT, Clifford HT, Yeo PF (1985) The Families of the Monocotyledons. Springer, Berlin

    Book  Google Scholar 

  • Douzery EJP, Pridgeon AM, Kores P, Linder HP, Kurzweil H, Chase MW (1999) Molecular phylogenetics of Diseae (Orchidaceae): a contribution from nuclear ribosomal ITS sequences. Am J Bot 86(6):887–899

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Davis JI, Soreng RJ, Garvin D, Anderson MJ (1992) Chloroplast DNA inversions and the origin of the glass family (Poaceae). PNAS 89:7722–7726

    Article  CAS  PubMed  Google Scholar 

  • Farris JS, Kallersjo M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Fuse S, Tamura MN (2000) A phylogenetic analysis of the plastid matK gene with emphasis on Melanthiaceae sensu lato. Plant Biol 2:415–427

    Article  CAS  Google Scholar 

  • Fuse S, Lee NS, Tamura MN (2004) Biosystematic studies on the genus Heloniopsis (Melanthiaceae) II. Two new species from Korea based on morphological and molecular evidence. Taxon 53:949–958

    Article  Google Scholar 

  • Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:521–523

    CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Yukawa T (2002) A new species of Yoania (Orchidaceae) from southern Nagano, central Japan. Acta Phytotax Geobot 53:107–114

    Google Scholar 

  • Kato H, Yamada K, Ueda M, Takahashi H, Kawano S (1996) Chloroplast DNA variations in Veratrum L. (Liliaceae) based on restriction site analysis. Acta Phytotax Geobot 47(2):203–211

    Google Scholar 

  • Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Mo Bot Gard 87:482–498

    Article  Google Scholar 

  • Kikuchi R, Park JH, Takahashi H, Maki M (2010) Disjunct distribution of chloroplast DNA haplotypes in the understory perennial Veratrum album ssp. oxysepalum (Melanthiaceae) in Japan as a result of ancient introgression. New Phytol 188:879–891

    Article  PubMed  Google Scholar 

  • Kim KJ, Lee HL (2005) Widespread occurrence of small inversions in the chloroplast genomes of land plants. Mol Cells 19:104–113

    CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kitamura S (1964) Veratrum. In: Kitamura S, Murata G, Koyama T (eds) Coloured illustrations of herbaceous plants of Japan, vol III. Hoikusha, Osaka, pp 148–150

    Google Scholar 

  • Lee NS (1984) A taxonomic study of Korean Veratrum. Kor J Plant Taxon 15:49–65

    CAS  Google Scholar 

  • Lee WC (1996a) Lineamenta Florae Korea. Academybook, Seoul

    Google Scholar 

  • Lee YN (1996b) Flora of Korea. Gyohaksa, Seoul, pp 154–165

    Google Scholar 

  • Liao WJ, Yuan YM, Zhang DY (2007) Biogeography and evolution of flower color in Veratrum (Melanthiaceae) through inference of a phylogeny based in multiple DNA markers. Plant Syst Evol 267:177–190

    Article  Google Scholar 

  • Linnaeus C (1753) Species Plantarum. vol. 1 and 2. Stockholm, Holmiae, Impensis L. Salvii

  • Loesener O (1926) Studien über die Gattung Veratrum und ihre Verbreitung. Verhandlungen des botanischen Vereins der Provinz Brandenburg 68:105–166

    Google Scholar 

  • Loesener O (1927) Übersicht über Arten der Gattung Veratrum, Teil I. Repertorium Specierum Novarum Regni Vegetabilis 24:61–72

    Article  Google Scholar 

  • Loesener O (1928) Übersicht über Arten der Gattung Veratrum, Schluss. Repertorium Specierum Novarum Regni Vegetabilis 25:1–10

    Article  Google Scholar 

  • Mathew B (1989) A review of Veratrum. Plantsman 11:35–61

    Google Scholar 

  • Nakai T (1937a) Species generic Veratri in regione Manshurico-Koreano sponte nascentes. Rep Inst Sci Res Manchoukuo I(9):325–344

    Google Scholar 

  • Nakai T (1937b) Japanese species of Veratrum (I). J Jpn Bot 13:631–645

    Google Scholar 

  • Nakai T (1937c) Japanese species of Veratrum (II). J Jpn Bot 13:701–713

    Google Scholar 

  • Nylander JAA (2004) MrModeltest 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala

  • Ohwi J (1953) Flora of Japan. Shibundo, Tokyo

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136

    Article  CAS  PubMed  Google Scholar 

  • Satake Y (1942) Veratrum stamineum Maximowicz var. micranthum Satake (var. nov.). J Jpn Bot 18:661

  • Satake Y (1982) Veratrum. In: Satake Y, Ohwi J, Kitamura S, Watari S, Tominari T (eds) Wild flowers of Japan, herbaceous plants, vol 1. Heibonsha, Tokyo, pp 28–29

    Google Scholar 

  • Savolainen V, Fay MF, Albach DC, Backlund A, Bank M, Cameron KM, Johnson SA, Lledó MD, Pintaud JC, Powell M, Sheahan MC, Soltis DE, Soltis PS, Weston P, Whitten WM, Wurdack KJ, Chase MW (2000) Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences. Kew Bull 55:257–309

    Article  Google Scholar 

  • Schönenberger J, Conti E (2003) Molecular phylogeny and floral evolution of Penaeaceae, Oliniaceae, Phynchocalycaceae and Alzateaceae (Myrtales). Am J Bot 90(2):293–309

    Article  PubMed  Google Scholar 

  • Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92(1):142–166

    Article  CAS  PubMed  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    Article  CAS  PubMed  Google Scholar 

  • Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF (1998) The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogenetic reconstruction in a recently diverged plant group. Am J Bot 85:1301–1315

    Article  CAS  PubMed  Google Scholar 

  • Steele KP, Vilgalys R, Rehner S, Mishler BD (1990) Phylogenetic analyses of Polemoniaceae using cp-DNA sequence data. Fourth International Congress of Systematic and Evolutionary Biology, Baltimore

    Google Scholar 

  • Swofford DL (2002) PAUP: Phylogenetic Analysis Using Parsimony, Vers. 4.0. Sinauer, Sunderland, MA, USA

  • Takahashi H (1997) Veratrum. In: Shimizu T (ed) Flora of Nagano Prefecture. The Shinano Mainichi Shimbun, Nagano, pp 1411–1413

    Google Scholar 

  • Tamura MN (1998) Melanthiaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol III., Flowering plants: monocotyledonsSpringer, Berlin, pp 369–380

    Google Scholar 

  • Tamura MN, Fuse S, Azuma H, Hasebe M (2004a) Biosystematic studies on the family Tofieldiaceae I. Phylogeny and circumscription of the family inferred from DNA sequences of matK and rbcL. Plant Biol 6:562–567

    Article  CAS  PubMed  Google Scholar 

  • Tamura MN, Yamashita J, Fuse S, Haraguchi M (2004b) Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL gene sequences. J Plant Res 117:109–120

    Article  CAS  PubMed  Google Scholar 

  • Tamura MN, Azuma H, Yamashita J, Fuse S, Ishii T (2010) Biosystematic studies on the family Tofieldiaceae II. Phylogeny of species of Tofieldia and Triantha inferred from plastid and nuclear DNA sequences. Acta Phytotax Geobot 60:131–140

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Yamashita J, Tamura MN (2000) Molecular phylogeny of the Convallariaceae (Asparagales). In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 387–400

    Google Scholar 

  • Yamashita J, Tamura MN (2004) Phylogenetic analyses and chromosome evolution in Convallarieae (Ruscaceae sensu lato), with some taxonomic treatments. J Plant Res 117:363–370

    Article  PubMed  Google Scholar 

  • Zharkikh A (1994) Estimation of evolutionary distances between nucleotide sequences. J Mol Evol 39:315–329

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman JH (1958) A Monograph of Veratrum. Ph. D. thesis. University of Wisconsin, Madison, WI, USA

  • Zomlefer WB, Whitten WM, Williams NH, Judd WS (2001) Generic circumscription and relationships in the tribe Melanthieae (Liliales, Melanthiaceae), with emphasis on Zigadenus: evidence from ITS and trnL-F sequence data. Am J Bot 88:1657–1669

    Article  CAS  PubMed  Google Scholar 

  • Zomlefer WB, Whitten WM, Williams NH, Judd WS (2003) An overview of Veratrum s.l. (Liliales: Melanthiaceae) and an infrageneric phylogeny based on ITS sequence data. Syst Bot 28:250–269

    Google Scholar 

  • Zomlefer WB, Judd WS, Gandhi KN (2010) (1928) Proposal to conserve the name Veratrum against Melanthium (Melanthiaceae). Taxon 59(2):644–645

    Google Scholar 

Download references

Acknowledgments

This study was supported as a joint research project under the Korea–Japan Basic Scientific Cooperation Program of the Korea Science and Engineering Foundation (Grant KOSEF-2005-0517-1) and the Japanese Society for the Promotion of Science (JSPS). We thank Dr. Mark S. Roh of the USDA and Holden Arboretum for samples, and Dr. Seung-Chul Kim of SungKyunKwan University for critical reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Sook Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.O., Tamura, M.N., Fuse, S. et al. Taxonomic status and phylogeny of Veratrum section Veratrum (Melanthiaceae) in Korea and Japan based on chloroplast and nuclear sequence data. Plant Syst Evol 300, 75–89 (2014). https://doi.org/10.1007/s00606-013-0861-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0861-3

Keywords

Navigation