Skip to main content
Log in

Improvement of fluorescent chromosome in situ PCR and its application in the phylogeny of the genus Fagopyrum Mill. using nuclear genes of chloroplast origin (cpDNA)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Fluorescent chromosome in situ PCR method plays an important role in many fields of biology and can be used for determining physical maps, chromosomal structures and phylogeny. In the present study, improvements are made to fluorescent chromosome in situ PCR protocol by incorporating the use of SYBR Green I. All the complex procedures in this method have been removed, including the fixing of PCR products, the linkage step of antigen and antibody and the necessary detection the fluorescence signal. This new method is useful for the types of studies mentioned above. As an example, this improved technique was performed using primers for the 16S rDNA, 4.5S rDNA and psbA chloroplast DNA (cpDNA) genes to investigate the phylogeny of buckwheat, the introgression of cpDNA genes into nuclear genome and the chromosomal location of these genes for the construction of a physical map. The results showed that the 16S rDNA, 4.5S rDNA and psbA cpDNA genetic markers were found with different abundances and physical distributions in the nuclear genomes of the seven buckwheat species (10 accessions in total) under investigation. These data were used to confirm the phylogeny of these buckwheat species by constructing a phylogenetic tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akbarova YY, Solovyev VV, Shahmuradov IA (2010) Possible functional and evolutionary role of plastid DNA insertions in rice genome. Appl Comput Math 9:19–33

    Google Scholar 

  • Arthofer W, Schüler S, Steiner FM, Schlick-Steiner BC (2010) Chloroplast DNA-based studies in molecular ecology may be compromised by nuclear-encoded plastid sequence. Mol Ecol 19:3853–3856

    Article  PubMed  CAS  Google Scholar 

  • Ayliffe MA, Timmis JN (1992) Tobacco nuclear DNA contains long tracts of homology to chloroplast DNA. Theor Appl Genet 85:229–238

    CAS  Google Scholar 

  • Bensasson D, Zhang DX, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution′s misplaced witnesses. Trends Ecol Evol 16:314–321

    Article  PubMed  Google Scholar 

  • Boogaart P, Samallo J, Agsteribbe E (1982) Similar genes for a mitochondrial ATPase subunit in the nuclear and mitochondrial genome of Neurospora crassa. Nature 298:187–189

    Article  PubMed  Google Scholar 

  • Chen QF (1999a) A study of resource of Fagopyrum (Polygonaceae) native to China. Bot J Linn Soc 130:53–64

    Article  Google Scholar 

  • Chen QF (1999b) Hybridization between Fagopyrum (Polygonaceae) species native to China. Bot J Linn Soc 131:177–185

    Article  Google Scholar 

  • Chen QF (2001a) Discussion on the origin of cultivated buckwheat in genus Fagopyrum (2001) Adv Buckwheat Res 206–213

  • Chen QF (2001b) Karyotype analysis of five buckwheat species (Fagopyrum) native to China (in Chinese). Guihaia 21(2):107–110

    CAS  Google Scholar 

  • Chen QF (2012) Plant sciences on genus Fagopyrum. Science Press, Beijing

    Google Scholar 

  • Chen QF, Hsam SLK, Zeller FJ (2004) A study of isozyme, and interspecific hybridization on big-achene group of buckwheat species (Fagopyrum, Polygonaceae). Crop Sci 44:1511–1518

    Article  Google Scholar 

  • Clegg MT (1993) Chloroplast gene sequences and the study of plant evolution. Proc Nat Acad Sciences USA 90:363–367

    Article  CAS  Google Scholar 

  • Gaziev AI, Shaikhaev GO (2010) Nuclear mitochondrial pseudogenes. Mol Biol 44(3):358–368

    Article  CAS  Google Scholar 

  • Gellissen G, Bradfield JY, White BN, Wyatt GR (1983) Mitochondrial DNA sequences in the nuclear genome of a locust. Nature 301:631–634

    Article  PubMed  CAS  Google Scholar 

  • Gu GY, Wu LL, Ma DL et al (1999) Comparative study of three different in situ PCR methods. Chin J Histochem Cytochem 3:236

    Google Scholar 

  • Guo YZ, Chen QF, Yang LY, Huang YH (2007) Analyses of the seed protein contents on the cultivated and wild buckwheat resources. Genet Resour Crop Evol 54(7):465–472

    Article  Google Scholar 

  • Haase AT, Retzel EF, Staskus KA (1990) Amplification and detection of lentiviral DNA inside cells. Proc Nat Acad Sci USA 87(13):4971–4975

    Article  PubMed  CAS  Google Scholar 

  • Hadler HI, Dimitrijevic B, Mahalingam R (1983) Mitochondrial DNA and nuclear DNA from normal rat liver have a common sequence. Proc Nat Acad Sci USA 80:6495–6499

    Article  PubMed  CAS  Google Scholar 

  • Harwood WA, Bilham LJ, Travella S, Salvo-Garrido H, Snape JW (2005) Fluorescence in situ hybridization to localize transgenes in plant chromosomes. Methods Mol Biol 286:327–340

    PubMed  CAS  Google Scholar 

  • Hishikawa Y, An SC, Tomomi YF, Shibata Y, Koji T (2009) Improvement of in situ PCR by optimization of PCR cycle number and proteinase K concentration: localization of X chromosome-linked phosphoglycerate kinase-1 gene in mouse reproductive organs. Acta Histochem Cytochem 42(2):15–21

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Orford SJ, Timmis JN (2006) In situ hybridization to plant tissues and chromosomes. Methods Mol Biol 326:203–218

    PubMed  CAS  Google Scholar 

  • Kamimura N, Ishii S, Liandong M, Shay JW (1989) Three separate mitochondrial DNA sequences are contiguous in human genomic DNA. J Mol Biol 210:703–707

    Article  PubMed  CAS  Google Scholar 

  • Kleine T, Maier UG, Leister D (2009) DNA transfer from the organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol 60:115–138

    Article  PubMed  CAS  Google Scholar 

  • Krotov AS, Dranenko ET (1973) An amphidiploid buckwheat, F. giganteum Krotov sp. nova. Byulleten Vsesoyuznogo Ordena Lenina Instituta Rastenievodstva Imeni N.I.Vavilova 30: 41–45

  • Li JH, Chen QF, Zeller FJ (2008) Variation in seed protein subunits among species of the genus Fagopyrum Mill. Plant Syst Evol 273:193–202

    Article  Google Scholar 

  • Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol 118:9–17

    Article  PubMed  CAS  Google Scholar 

  • Mukai Y, Appels R (1996) Direct chromosome mapping of plant genes by in situ polymerase chain reaction (in situ PCR). Chromosome Res 4(5):401–404

    PubMed  CAS  Google Scholar 

  • Nazar RN, McDougall J, van Ryk DI (1987) Structure and evolution of the 4.5-5S ribosomal RNA intergenic region from Glycine max (soya bean). Nucleic Acids Res 15(18):7593–7603

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi O, Matsuoka Y (1996) Search for the wild progenitor of buckwheat. Taxonomy of Fagopyrum (Polygonaceae) species based on morphology, isozymes and cpDNA variability. Genes Genet Syst 71:383–390

    Article  Google Scholar 

  • Ohsako T, Ohnishi O (2000) Intra- and interspecific phylogeny of wild Fagopyrum (Polygonaceae) species based on nucleotide sequences of non-coding regions in chloroplast DNA. Am J Bot 87(4):573–582

    Article  PubMed  CAS  Google Scholar 

  • Peter JN, Matthias R, Bruce AD (1991) Expression of a higher plant psbA gene in synechocystis 6803 yields a functional hybrid photosystem II reaction center complex. Plant Cell 3:383–395

    Google Scholar 

  • Ren CJ, Chen QF (2009) Studies of RAPD on genus Fagopyrum germplasm (in Chinese). Seeds 28(11):37–44

    Google Scholar 

  • Richly E, Leister D (2004) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21:1081–1084

    Article  PubMed  CAS  Google Scholar 

  • Santos AP, Wegel E, Allen GC, Thompson WF, Stoger E, Shaw P, Abranches R (2006) In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. Plant Methods 2:18

    Article  PubMed  Google Scholar 

  • Schwarzacher T (2009) Fluorescent in situ hybridization to detect transgene integration into plant genomes. Methods Mol Biol 478:227–246

    Article  PubMed  Google Scholar 

  • Yamane K, Yasui Y, Ohnishi O (2003) Intraspecific cpDNA variation of diploid and tetraploid perennial buckwheat, F. cymosum (Polygonaceae). Am J Bot 90:339–346

    Article  PubMed  Google Scholar 

  • Yang JX, Guo WH, Wu BJ (1996) Application and development of in situ polymerase chain reaction (in situ PCR) technology. Nat Explor 15(3):55–59

    Google Scholar 

  • Zhang YZ, Chen QF (2008a) Peroxidase isozyme of young leaves of genus Fagopyrum plants at three-leaf stage (in Chinese). J Wuhan Bot Res 26(2):213–217

    Google Scholar 

  • Zhang YZ, Chen QF (2008b) Study of glutamate oxaloacetate transaminase isozyme on resources of genus Fagopyrum (in Chinese). Seeds 27(5):39–46

    Google Scholar 

  • Zhang YZ, Chen QF (2008c) Esterase isozymes of young leaves at three-leaf stage of genus Fagopyrum plants (in Chinese). J Wuhan Bot Res 26(4):428–432

    CAS  Google Scholar 

  • Zhang YZ, Chen QF (2010) Amylase and formate dehydrogenase isozymes in the genus Fagopyrum. Guihaia 30(3):395–402

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Natural Science Foundation of China (31060207, 31171609, 30471116), the Earmarked Fund for China Agriculture Research System (CARS-08-A4), the Project of the Scientific and Technological Innovation Teams in Guizhou (QianKeHe RenCai TuanDui [2011]4007), Guizhou Key Agricultural Project (QianKeHe NY Zi [2010]3094) and Guizhou Animal and Plant Breeding Project (QianNongYuZhuanZi [2010] 023) for providing funds, and to Shanghai Office ELIXIGEN CO. for proofing the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Fu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, FL., Zeller, F.J., Huang, KF. et al. Improvement of fluorescent chromosome in situ PCR and its application in the phylogeny of the genus Fagopyrum Mill. using nuclear genes of chloroplast origin (cpDNA). Plant Syst Evol 299, 1679–1691 (2013). https://doi.org/10.1007/s00606-013-0825-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0825-7

Keywords

Navigation