Skip to main content

Advertisement

Log in

Conservation genetics of the endangered terrestrial orchid Liparis japonica in Northeast China based on AFLP markers

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Levels of genetic diversity and population genetic structure of the rare, endangered terrestrial orchid Liparis japonica were examined for eight natural populations (n = 185) in Northeast China using six AFLP primer pairs, where this species has experienced severe habitat loss and fragmentation. Based on 406 DNA bands, a high level of genetic diversity was found at the species level with the PPB of 85.47 %, while the genetic diversity at the population level was low (PPB = 47.48 %). A significantly high degree of population differentiation was found with 42.69 % variation existed among populations as measured by AMOVA, indicating potential restricted gene flow. The genetic distances between populations were independent of the corresponding geographic distances, and the genetic relationship of individuals had no significant correlation with their spatial distribution. The restricted gene flow might be impacted by reduced population size, habitat destruction and fragmentation. The results in this study suggested that habitat protection and keeping a stable environment are critical for the conservation of L. japonica species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo JA (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188

    Article  PubMed  Google Scholar 

  • Barrett SCH, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, Oxford, pp 3–30

  • Brundrett MC (2007) Scientific approaches to Australian temperate terrestrial orchid conservation. Aust J Bot 55:293–307

    Article  Google Scholar 

  • Cai XY, Feng ZY, Zhang XX, Xu W, Hou BW, Ding XY (2011) Genetic diversity and population structure of an endangered orchid (Dendrobium loddigesii Rolfe) from China revealed by SRAP markers. Sci Hortic Amsterdam 129:877–881

    Article  Google Scholar 

  • Chen LZ (1993) Biodiversity in China—the status and conservation strategy. Science Press, Beijing, pp 181–205

  • Chen XY (2000) Effects of habitat fragmentation on genetic structure of plant populations and implications for the biodiversity conservation. Acta Ecol Sin 20:884–892

    Google Scholar 

  • Chen SC, Tsi ZH (1998) The orchids of China. Chinese Forestry Press, Beijing, pp 1–208

  • Chen XH, Gao YB, Zhao NX, Zhao TT, Zhu MJ (2009) An AFLP analysis of genetic diversity and structure of Caragana microphylla populations in Inner Mongolia steppe, China. Biochem Syst Ecol 37:395–401

    Article  CAS  Google Scholar 

  • Chung MY, Chung MG (2008) Conservation genetics of the endangered terrestrial orchid Pogonia minor in South Korea. Ann Bot Fennici 45:455–464

    Article  Google Scholar 

  • Chung MY, Chung MG (2012) A review of the use of genetic markers in orchid systematics with emphasis on allozymes. Biochem Syst Ecol 41:62–73

    Article  CAS  Google Scholar 

  • Chung MY, Nason JD (2007) Spatial demographic and genetic consequences of harvesting within populations of the terrestrial orchid Cymbidium georingii. Biol Conserv 137(1):125–137

    Article  Google Scholar 

  • Degen B, Blanc L, Caron H, Maggia L, Kremer A, Gourlet-Fleury S (2006) Impact of selective logging on genetic composition and demographic structure of four tropical tree species. Biol Conserv 131:386–401

    Article  Google Scholar 

  • Editorial Committee of the Flora of China (1992) Flora of China. Science Press, Beijing

    Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size—implications for plant conservation. Annu Rev of Ecol and Syst 24:217–242

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Forrest AD, Hollingsworth MI, Hollingsworth PM, Sydes C, Bateman RM (2004) Population genetic structure in European populations of Spirathes romanzoffiana set in the context of other genetic studies on orchids. Heredity 92:218–227

    Article  PubMed  CAS  Google Scholar 

  • George S, Sharma J, Yadon VL (2009) Genetic diversity of the endangered and narrow endemic Piperia yadonii (Orchidaceae) assessed with ISSR polymorphisms. Am J Bot 96(11):2022–2030

    Article  PubMed  CAS  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos T R Soc B 351:1291–1298

    Article  Google Scholar 

  • Jump AS, Marchant R, Penuelas J (2009) Environmental change and the option value of genetic diversity. Trends Plant Sci 14(1):51–58

    Article  PubMed  CAS  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17(5):230–241

    Article  Google Scholar 

  • Li A, Ge S (2006) Genetic variation and conservation of Changnienia amoena, an endangered orchid endemic to China. Plant Syst Evol 258:251–260

    Article  CAS  Google Scholar 

  • Li A, Luo YB, Ge S (2002) A preliminary study on conservation genetics of an endangered orchid (Paphiopedilum micranthum) from southwestern China. Biochem Genet 40:195–201

    Article  PubMed  CAS  Google Scholar 

  • Li SJ, Sui YZ, Sun ZH, Wang FY, Li YW (2005) Landscape pattern and fragmentation of natural secondary forests in the eastern mountainous region, northeast China: a case study of Mao′ershan forests in Heilongjiang Province. J Forestry Res 16(1):35–38

    Article  Google Scholar 

  • Li XX, Ding XY, Chu BH, Zhou Q, Ding G, Gu S (2008) Genetic diversity analysis and conservation of the endangered Chinese endemic herb Dendrobium officinale Kimura et Migo (Orchidaceae) based on AFLP. Genetica 133:159–166

    Article  PubMed  CAS  Google Scholar 

  • Lu HP, Cai YW, Chen XY, Zhang X, Gu YJ, Zhang GF (2006) High RAPD but no cpDNA sequence variation in the endemic and endangered plant, Heptacodium miconioides Rehd. (Caprifoliaceae). Genetica 128:409–417

    Article  PubMed  CAS  Google Scholar 

  • Machon N, Bardin P, Mazer S, Moret J, Godelle B, Austerlita F (2003) Relationship between genetic structure and seed and pollen dispersal in the endangered orchid Spiranthes spiralis. New Phytol 157:677–687

    Article  Google Scholar 

  • Morden CW, Loeffler W (1999) Fragmentation and genetic differentiation among subpopulations of the endangered Hawaiian mint Haplostachys haplostachya (Lamiaceae). Mol Ecol 8:617–625

    Article  Google Scholar 

  • Munoz M, Warner J, Albertazzi FJ (2010) Genetic diversity analysis of the endangered slipper orchid Phragmipedium longifolium in Costa Rica. Plant Syst Evol 290:217–223

    Article  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Nybom H, Bartish LV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol 3(2):93–114

    Article  Google Scholar 

  • Patzak J (2001) Comparison of RAPD, STS, ISSR and AFLP molecular methods used for assessment of genetic diversity in hop (Humulus lupulus L.). Euphytica 121:9–18

    Article  CAS  Google Scholar 

  • Peakall R, Beattie AJ (1996) Ecological and genetic consequences of pollination by sexual deception in the orchid Caladenia tentaculata. Evolution 50:2207–2220

    Article  Google Scholar 

  • Pillon Y, Zaman FQ, Fay MF, Hendoux F, Piquot Y (2007) Genetic diversity and ecological differentiation in the endangered fen orchid (Liparis loeselii). Conserv Genet 8:177–184

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163

    Article  CAS  Google Scholar 

  • Rohlf FJ (1994) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 1.80. Exeter Software, New York

  • Rosas F, Quesada M, Lobo JA, Sork VL (2011) Effects of habitat fragmentation on pollen flow and genetic diversity of the endangered tropical tree Swietenia humilis (Meliaceae). Biol Conserv 144:3082–3088

    Article  Google Scholar 

  • Soliva M, Widmer A (2003) Gene flow across species boundaries sympatric, sexually deceptive Ophrys (Orchidaceae) species. Evolution 57:2252–2261

    PubMed  Google Scholar 

  • Swarts ND, Dixon KW (2009) Perspectives on orchid conservation in botanic gardens. Trends Plant Sci 14(11):590–598

    Article  PubMed  CAS  Google Scholar 

  • Swarts ND, Sinclair EA, Krauss SL, Dixon KW (2009) Genetic diversity in fragmented populations of the critically endangered spider orchid Caladenia huegelii: implications for conservation. Conserv Genet 10:1199–1208

    Article  Google Scholar 

  • Vilas C, Miguel ES, Amaro R, Garcia C (2006) Relative contribution of inbreeding depression and eroded adaptive diversity to extinction risk in small populations of shore campion. Conserv Biol 20(1):229–238

    Article  PubMed  Google Scholar 

  • Vos P, Hogers R, Blecker M, Reijang M, Lee TVD, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang HZ, Wu ZX, Lu JJ, Shi NN, Zhao Y, Zhang ZT, Liu JJ (2009) Molecular diversity and relationship among Cymbidium goeringii cultivars based on inter-simple sequence repeat (ISSR) markers. Genetica 136:391–399

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Compton SG, Chen XY (2011) Fragmentation can increase spatial genetic structure without decreasing pollen-mediated gene flow in a wind-pollinated tree. Mol Ecol 20:4421–4432

    Article  PubMed  Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1999) POPGENE version 1.32: Microsoft windows based freeware for population genetic analysis, quick user guide. Center for International Forestry Research, University of Alberta, Canada

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  PubMed  CAS  Google Scholar 

  • Zhao AL, Chen XY, Zhang X, Zhang D (2006) Effects of fragmentation of evergreen broad-leaved forests on genetic diversity of Ardisia crenata var. bicolor (Myrsinaceae). Biodivers Conserv 15:1339–1351

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31100299), Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20112103120016), China Postdoctoral Science Foundation (No. 2012M510835), Foundation of Liaoning Educational Committee (No. L2011107), and Foundation for the Youth Scholars of Shenyang Agricultural University (No. 20101004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Guan, J., Ding, R. et al. Conservation genetics of the endangered terrestrial orchid Liparis japonica in Northeast China based on AFLP markers. Plant Syst Evol 299, 691–698 (2013). https://doi.org/10.1007/s00606-012-0744-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-012-0744-z

Keywords

Navigation