Skip to main content
Log in

Flow cytometry distinction between species and between landraces within Lathyrus species and assessment of true-to-typeness of in vitro regenerants

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The genus Lathyrus includes a number of neglected wild relatives of pea with potential as genetic resources for acquisition of stress resistance traits, but, due to little breeding, genotypes under culture are mainly landraces and seldom true varieties. Development of in vitro approaches for Lathyrus is also limited, and assessments of nuclear DNA content, for taxonomical or breeding purposes, are sparse. Genome size and AT/GC ratio were determined by flow cytometry, allowing for distinction between protein and forage L. sativus, L. cicera, L. ochrus and L. clymenum and the ornamental sweet pea (L. odoratus), and also between landraces within L. sativus L. and L. cicera L. In addition, explants from in vitro seedlings of eight genotypes from the five Lathyrus species above were cultivated in vitro, plant regeneration was achieved for all landraces and species, and the nuclear DNA content of the regenerants was compared with that of their mother plants, whereby the true-to-typeness of such regenerants was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali HBM, Meister A, Schubert I (2000) DNA content, rDNA loci, and DAPI bands reflect the phylogenetic distance between Lathyrus species. Genome 43:1027–1032

    CAS  PubMed  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Baranyi M, Greilhuber J (1995) Flow cytometric analysis of genome size variation in cultivated and wild Pisum sativum L. (Fabaceae). Plant Syst Evol 194:231–239

    Article  Google Scholar 

  • Baranyi M, Greilhububer J (1996) Flow cytometric and feulgen densitometric analysis of genome size variation in Pisum. Theor Appl Genet 92:297–307

    Article  Google Scholar 

  • Baranyi M, Greilhuber J, Swiecicki WK (1996) Genome size in wild Pisum species. Theor Appl Genet 93:717–721

    Article  CAS  Google Scholar 

  • Barik DP, Mohapatra U, Chand PK (2005) Transgenic grasspea (Lathyrus sativus L.): factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep 24:523–531

    Article  CAS  PubMed  Google Scholar 

  • Barow M, Meister A (2002) Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytom A 47:1–7

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95:45–90

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Phil Trans R Soc Lond Ser B-Biol Sci 274:227–274

    Article  CAS  Google Scholar 

  • Biswas AK (2007) Induced mutation in grasspea (Lathyrus sativus L.). In: Ochatt SJ, Jain SM (eds) Breeding of neglected and under-utilised crops, spices and herbs. Science, Plymouth, pp 29–40

    Google Scholar 

  • Chaudhury D, Das A (1988) X-irradiation induced biochemical changes in the seeds of L. sativus. Indian Biol 20:30–35

    Google Scholar 

  • Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85:625–631

    Article  Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytom A 51:127–128

    Google Scholar 

  • Doležel J, Greilhuber J, Suda J (eds) (2007) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley-VCH Verlag, Weinheim. P.455. ISBN: 978-3-527-31487-4

  • Doležel J, Greilhuber J, Suda J (2007b) Flow cytometry with plants: an overview. In: Greilhuber J, Suda J, Dolezel J (eds) Flow cytometry with plant cells. Wiley-VCH Verlag, Weinheim, pp 41–60

    Chapter  Google Scholar 

  • Durieu P, Ochatt SJ (2000) Efficient intergeneric protoplast fusion between pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.). J Exp Bot 51:1237–1242

    Article  CAS  PubMed  Google Scholar 

  • Elmaghrabi A, Ochatt S (2006) Isoenzymes and flow cytometry for the assessment of true-to-typeness of calluses and cell suspensions of barrel medic prior to regeneration. Plant Cell Tissue Organ Cult 85:31–43

    Article  CAS  Google Scholar 

  • Galbraith DW, Bartos J, Dolezel J (2005) Flow cytometry and cell sorting in plant biotechnology. In: Sklar LA (ed) Flow Cytometry for Biotechnology. Oxford University Press, Oxford, pp 291–322

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Godelle B, Cartier D, Marie D, Brown SC, Siljak-Yakovlev S (1993) Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculating genomic base composition. Cytometry 14:618–626

    Article  CAS  PubMed  Google Scholar 

  • Greilhuber J, Doležel J, Lysàk MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260

    Article  CAS  PubMed  Google Scholar 

  • Greilhuber J, Temsch EM, Loureiro JCM (2007) Nuclear DNA content measurement. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH Verlag, Weinheim, pp 67–102

    Chapter  Google Scholar 

  • Heller FO (1973) DNA Measurement of Vicia faba L. with the pulse cytophotometry. Ber Dtsch Bot Gesellschaft 86:437–441

    CAS  Google Scholar 

  • Hutchinson J, Narayan RKJ, Rees H (1980) Constraints upon the composition of supplementary DNA. Chromosoma 78:37–145

    Article  Google Scholar 

  • Kapuscinski J (1995) DAPI: a DNA-specific fluorescent probe. Biotechnol Histochem 70:220–233

    Article  CAS  Google Scholar 

  • Koné M, Patat-Ochatt EM, Conreux C, Sangwan RS, Ochatt SJ (2007) In vitro morphogenesis from cotyledon and epicotyl explants and flow cytometry distinction between landraces of Bambara groundnut [Vigna subterranea (L.) Verdc] an underutilised grain legume. Plant Cell Tiss Organ Cult 88:61–75

    Article  Google Scholar 

  • Lambein F, Kuo YH (2004) Somaclonale variatie in Lathyrus sativus. In: Abstracts, autumn meeting Netherlands Society for plant biotechnology and tissue culture NVPW, Leiden. http://www.nvpw.nl/pdf/NVPW04-2.pdf. Accessed 20 Sep 2010

  • Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH Verlag, Weinheim, pp 153–176

    Chapter  Google Scholar 

  • Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78:41–51

    Article  CAS  PubMed  Google Scholar 

  • Mc Ilvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186

    CAS  Google Scholar 

  • McCutchan JS, Larkin PJ, Stoutjesdijk PA, Morgan ER, Taylor PWJ (1999) Establishment of shoot and suspension cultures for protoplast isolation in Lathyrus sativus L. J Breed Genet 31:43–50

    Google Scholar 

  • Mehta SL (1997) Plant biotechnology for removal of ODAP from Lathyrus. In: Haimanot RT, Lambein F (eds) Lathyrus and lathyrism, a decade of progress. University of Ghent, Ghent, pp 103–104

    Google Scholar 

  • Meister A, Barow M (2007) DNA base composition of plant genomes. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH Verlag, Weinheim, pp 177–215

    Chapter  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray BG, Hammett KRW, Standring LS (1992) Genomic constancy during the development of Lathyrus odoratus cultivars. Heredity 68:321–327

    Article  Google Scholar 

  • Nagl W, Jeanjour M, Kling H, Kuhner S, Michels I, Muller T, Stein B (1983) Genome and chromatin organization in higher plants. Biol Zentralblatt 102:129–148

    CAS  Google Scholar 

  • Nandini AV, Murray BG, O’Brien IEW, Hammett KRW (1997) Intra- and interspecific variation in genome size in Lathyrus (Leguminosae). Bot J Linn Soc 25:359–366

    Google Scholar 

  • Narayan RKJ (1982) Discontinuous DNA variation in the evolution of plant species—the genus Lathyrus. Evolution 36:877–891

    Article  Google Scholar 

  • Narayan RKJ, Rees H (1976) Nuclear DNA variation in Lathyrus. Chromosoma 54:141–154

    Article  CAS  Google Scholar 

  • Nerkar YS (1972) Induced variation and responses to selection for low neurotoxin content in Lathyrus sativus. Indian J Genet Plant Breed 32:175–180

    CAS  Google Scholar 

  • Nerkar YS (1976) Mutation studies in Lathyrus sativus. Indian J Genet Plant Breed 36:223–229

    Google Scholar 

  • Ochatt SJ (2008) Flow cytometry in plant breeding. Cytom A 73:581–598

    Article  Google Scholar 

  • Ochatt SJ, Pontécaille C, Rancillac M (2000) The growth regulators used for bud regeneration and shoot rooting affect the competence for flowering and seed set in regenerated plants of protein pea. In Vitro Cell Dev Biol–Plants 36:188–193

    Article  CAS  Google Scholar 

  • Ochatt S, Durieu P, Jacas L, Pontécaille C (2001) Protoplast, cell and tissue cultures for the biotechnological breeding of grass peas. Lathyrus Neurolathyrism Newslett 2:35–38

    Google Scholar 

  • Ochatt SJ, Muneaux E, Machado C, Jacas L, Pontécaille C (2002a) The hyperhydricity of in vitro regenerants is linked with an abnormal DNA content in grass pea (Lathyrus sativus L.). J Plant Physiol 159:1021–1028

    Article  CAS  Google Scholar 

  • Ochatt SJ, Sangwan RS, Marget P, Assoumou Ndong Y, Rancillac M, Perney P (2002b) New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breed 121:436–440

    Article  Google Scholar 

  • Ochatt SJ, Abirached-Darmency M, Marget P, Aubert G (2007) The Lathyrus paradox: “poor men’s diet” or a remarkable genetic resource for protein legume breeding? In: Ochatt SJ, Jain SM (eds) Breeding of neglected and under-utilised crops, spices and herbs. Science, Plymouth, pp 41–60

    Google Scholar 

  • Ochatt S, Pech C, Grewal R, Conreux C, Lülsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 166:1314–1328

    Article  CAS  PubMed  Google Scholar 

  • Ochatt SJ, Conreux C, Jacas L (2010) In vitro production of sweet peas (Lathyrus odoratus L.) via axillary shoots. In: Jain SM, Ochatt SJ (eds) Protocols for in vitro propagation of ornamental plants. Humana Springer, New Jersey, pp 293–301

    Chapter  Google Scholar 

  • Olszewska MJ, Osiecka R (1983) The relationship between 2C DNA content, life-cycle type, systematic position and the dynamics of DNA endoreplication inparenchyma nuclei during growth and differentiation of roots in somedicotyledonous-herbaceous species. Biochem Physiol Pflanzen 178:581–599

    CAS  Google Scholar 

  • Razdan MK, Cocking EC, Power JB (1980) Callus regeneration from mesophyll protoplasts of sweet pea (Lathyrus odoratus L.). Z Pflanzenphysiol 96:181–183

    Google Scholar 

  • Rees H, Hazarika MH (1969) Chromosome evolution in Lathyrus. Chromosom Today 2:158–165

    Google Scholar 

  • Roy PK, Ali K, Gupta A, Barat GK, Mehta SL (1993) β-Noxalyl-L-α,β-diaminopropionic acid in somaclones derived from internode explants of Lathyrus sativus. J Plant Biochem Biotechnol 2:9–13

    Article  CAS  Google Scholar 

  • Rybínski W (2003) Mutagenesis as a tool for improvement of traits in grasspea (Lathyrus sativus L.). Lathyrus Lathyrism Newslett 3:27–31

    Google Scholar 

  • Unal F, Callow RS (1995) Estimation of genome size by Feulgen photometry. Turkish J Bot 19:523–529

    Google Scholar 

  • Vaz Patto MC, Skiba B, Pang ECK, Ochatt SJ, Lambein F, Rubiales D (2006) Lathyrus improvement for resistance against biotic and abiotic stresses: from classical breeding to marker assisted selection. Euphytica 147:133–147

    Article  Google Scholar 

  • Vaz Patto MC, Hanbury CD, van Moorhem M, Lambein F, Ochatt S, Rubiales D (2011) Grass pea. In: de la Vega MP, Torres AM, Cubero JI, Kole C (eds) Genetics, genomics and breeding of cool season grain legumes. Science, Lebanon, pp 151–204

    Google Scholar 

  • Vinogradov AE (1994) Measurement by flow cytometry of genomic AT/GC ratio and genome size. Cytom A 16:34–40

    Article  CAS  Google Scholar 

  • Zambre M, Chowdhury B, Kuo YH, van Montagu M, Angenon G, Lambein F (2002) Prolific regeneration of fertile plants from green nodular callus induced from meristematic tissues in Lathyrus sativus L. (grass pea). Plant Sci 163:1107–1112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Ochatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochatt, S.J., Conreux, C. & Jacas, L. Flow cytometry distinction between species and between landraces within Lathyrus species and assessment of true-to-typeness of in vitro regenerants. Plant Syst Evol 299, 75–85 (2013). https://doi.org/10.1007/s00606-012-0704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-012-0704-7

Keywords

Navigation