Skip to main content
Log in

Chromosomal variation and evolution in Lycoris (Amaryllidaceae) I. Intraspecific variation in the karyotype of Lycoris chinensis Traub

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

In 188 bulbs from five populations of Lycoris chinensis from Anhui province, China, several chromosomal variations have been discovered. Although their frequencies are low, some rearranged chromosomes which are aberrant have been found. The aberrants are: (1) small metacentrics (m′); (2) submetacentrics (sm); (3) subtelocentrics (st); (4) acrocentrics (t); and (5) satellite chromosomes (SAT). All can be easily suspected as being derived from telocentric chromosomes (T type chromosomes). Some individuals having one or more B chromosomes have been found, and intrapopulational variation of B chromosomes in number has also been observed. Because of having B chromosome, L. chinensis has some different chromosome complement numbers: 2n = 16, 2n = 16 + 1B, 2n = 16 + 2B, 2n = 16 + 3B, and 2n = 16 + 5B. In addition, a new triploid karyotype composed of 3n = 24 = 9m + 11t(2SAT) + 4T chromosomes has been found. Vegetative propagation is an efficient means of perpetuating the aberrant chromosomes and the triploids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–3
Figs. 4–10
Figs. 11–16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Bose S (1960) Cytological investigation in Lycoris. 5. Chromosome number and Karyotype in Lycoris chinensis. Plant Life 16(1):83–86

    Google Scholar 

  • Bose S (1963) Karyotype alteration in Lycoris chinensis. Sci Cult 32(3):144–145

    Google Scholar 

  • Bougourd SM, Plowman AB, Ponsford NR, Elias ML, Holmes DS, Taylor S (1994) The case for unselfish B-chromosomes: evidence from Allium schoenoprasum. In: Brandham PE, Bennet MD (eds) Proceedings of the Kew chromosome conference IV. Royal Botanical Gardens, Kew, pp 21–34

    Google Scholar 

  • Bretagnolle F, Thompson JD (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22

    Article  Google Scholar 

  • Camacho JPM, Harbel TF, Beukeboom LW (2000) B-chromosome evolution, vol 355. The Royal Society, London, pp 163–178

    Google Scholar 

  • Felix WJP, Felix LP, Melo NF, Oliveira MBM, Dutilh JHA, Carvalho R (2011) Karyotype variability in species of the genus Zephyranthes Herb. (Amaryllidaceae–Hippeastreae). Plant Syst Evol 294:263–271

    Article  Google Scholar 

  • Houben A, Leach CR, Verlin D, Rofe R, Timmis JN (1997) A repetitive DNA sequence common to the different B chromosomes of the genus Brachycome. Chromosoma 106:513–519

    PubMed  CAS  Google Scholar 

  • Hsu BS, Huang SP, Zhao ZF (1984) Karyotypes analyses of in Lycoris anhweiensis and L. chinensis. Acta Bot Yunn 6(1):79–83

  • Hsu BS, Kurita S, Yu ZZ, Lin JZ (1994) Synopsis of the genus Lycoris (Amaryllidaceae). SIDA 16:301–331

    Google Scholar 

  • Imai HT, Maruyama T (1978) Karyotype evolution by pericentric inversion as a stochastic process. J Theor Biol 70:253–261

    Article  PubMed  CAS  Google Scholar 

  • Jones N, Houben AB (2003) Chromosomes in plants: escapes from the A chromosome genome? Trends Plant Sci 8:417–423

    Article  PubMed  CAS  Google Scholar 

  • Ke LX, Sun YG, Zheng Y, Zhang DC (1998) Karyotype analysis of three species of Lycoris Herb. J Anhui Normal Univ (Nat Sci) 21(4):343–348

    Google Scholar 

  • Kurita S (1986) Variation and evolution on the karyotype of Lycoris, Amaryllidaceae I. General Karyomorphological characteristics of the genus. Cytologia 51:803–815

    Article  Google Scholar 

  • Kurita S (1987a) Variation and evolution on the karyotype of Lycoris, Amaryllidaceae II. Karyotype analysis of ten taxa among which seven are native to China. Cytologia 52:19–40

    Article  Google Scholar 

  • Kurita S (1987b) Variation and evolution in the karyotype of Lycoris, Amaryllidaceae III. Intraspecific variation in the karyotype of L. traubii Hayward. Cytologia 52:117–128

    Article  Google Scholar 

  • Kurita S (1987c) Variation and evolution in the karyotype of Lycoris, Amaryllidaceae IV. Intraspecific variation in the karyotype of L. radiata (L’Hérit) Herb. and the origin of this triploid species. Cytologia 52:137–149

    Article  Google Scholar 

  • Kurita S (1988a) Variation and evolution in the karyotype of Lycoris, Amaryllidaceae VI. Intrapopulational and/or intraspecific variation in the karyotype of L. sanguinea Max. var. kiushiana and L. sanguinea Max. var. koreana (Nakai) Koyama. Cytologia 53:307–321

    Article  Google Scholar 

  • Kurita S (1988b) Variation and evolution on the karyotype of Lycoris, Amaryllidaceae VII. Modes of karyotype alteration within species and probable trend of karyotype evolution in the genus. Cytologia 53:323–335

    Article  Google Scholar 

  • Kurita S (1989) Variation and evolution in the karyotype of Lycoris (Amaryllidaceae) V. Chromosomal variation in L. sanguinea Maxim. Plant Species Biol 4:47–60

    Article  Google Scholar 

  • Kurita S, Hus PS, Zhou YZ, Lin JZ (1992) Karyotypes of some Lycoris species native to China and Korea. Proc Sec Sino-Jap Symposium Pl Chromos

  • Levan L, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Liu Y, Hsu BS (1989) A study on karyotypes of the genus Lycoris. Acta Phyto Sin 27(4):257–264

    Google Scholar 

  • Liu K, Zhou SB, Wang Y, Zhang D (2011) A karyomorphological study on two newly recorded taxa of Lycoris (Amaryllidaceae) in Anhui province, China. Caryologia 64(2):157–162

    Google Scholar 

  • Nishkawa K, Furata Y, Endo H (1979) Consideration of the chromosome evolution on the basis of nuclear DNA content and total chromosome length in Lycoris. Jap J Genet 54:387–396

    Article  Google Scholar 

  • Shi SD, Qiu YX, Li EX, Wu L, Fu CX (2006) Phylogenetic relationships and possible hybrid origin of Lycoris species (Amaryllidaceae) revealed by ITS sequences. Biochem Genet 44:198–206

    Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Tree 14:348–352

    PubMed  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley Publishing Company, California

    Google Scholar 

  • Sun YG, Zheng Y, Zhang DC, Shao JZ (1998) Karyotypes studies of 4 species of Lycoris from Anhui. Guihaia 18(4):363–367

    Google Scholar 

  • Xu YH, Li MX (1985) Karyotype analyses of four species (varieties) of Lycoris Herb. Acta Hort Sin 12(1):57–60

    Google Scholar 

  • Yoshida TH, Sagai T (1975) Variation of C-bands in the chromosomes of several subspecies of Rattus rattus. Chromosoma 50:283–300

    Google Scholar 

  • Yu BQ, Wang Y, Zhou SB, Qin WH (2004) Karyotypes study of Lycoris chinensis from Anhui. J West Anhui Univ 20(2):30–32

    Google Scholar 

  • Zhou SB, Yu BQ, Luo Q, Hu JR, Bi D (2007) Karyotypes of six populations of Lycoris radiata and discovery of the tetraploid. Acta Phyto Sin 45(4):513–522

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Anhui Province (11040606M77), the Key Foundation of Education Department of Anhui Province (KJ2011A129), the Foundation of Education Department of Anhui Province (KJ2010B364), the Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui (2004sys003), the Key Program of Natural Science Foundation of High College in Anhui Province (2006kj060a), and the Research Culture Funds of Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Biao Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, K., Zhou, SB., Huang, YJ. et al. Chromosomal variation and evolution in Lycoris (Amaryllidaceae) I. Intraspecific variation in the karyotype of Lycoris chinensis Traub. Plant Syst Evol 298, 1493–1502 (2012). https://doi.org/10.1007/s00606-012-0652-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-012-0652-2

Keywords

Navigation