Advertisement

Plant Systematics and Evolution

, Volume 298, Issue 6, pp 1085–1099 | Cite as

Genome size and chromosome number in Echinops (Asteraceae, Cardueae) in the Aegean and Balkan regions: technical aspects of nuclear DNA amount assessment and genome evolution in a phylogenetic frame

  • Ismael Sánchez-Jiménez
  • Oriane Hidalgo
  • Miguel Ángel Canela
  • Sonja Siljak-Yakovlev
  • Marija Edita Šolić
  • Joan Vallès
  • Teresa Garnatje
Original Article

Abstract

This work focuses on the representatives of genus Echinops (Asteraceae, Cardueae) in the Aegean and Balkan regions, from the perspective of their genome evolution. Chromosome numbers were determined by orcein staining in 14 populations of nine taxa, and DNA contents were assessed by flow cytometry in 24 populations of nine taxa. A molecular phylogeny based on the internal transcribed spacer (ITS) and trnL-trnF and including first sequences for two taxa (Echinops sphaerocephalus subsp. taygeteus and E. spinosissimus subsp. neumayeri) provided a framework for discussing genome changes. From a methodological point of view, similar C-DNA value estimates were obtained when measuring, for a same population, fresh leaves from adult plants collected in the field and from cultivated seedlings. Conversely, despite giving the appearance of being correct (e.g., low coefficient of variation), genome size assessed using silica gel-preserved material differs significantly from values obtained for the same populations with fresh material. Nevertheless, silica gel-preserved material may still provide rough estimates of genome size for, e.g., inferring ploidy level. Suitable—non-silica gel-based—DNA amounts assessed for 23 populations range from 2C = 6.52 pg (E. spinosissimus subsp. neumayeri) to 2C = 9.37 pg (E. bannaticus). Chromosome counts were established for the first time for Echinops graecus (2n = 32), E. sphaerocephalus subsp. albidus (2n = 32), E. sphaerocephalus subsp. taygeteus (2n = ca. 30), and E. spinosissimus subsp. neumayeri (2n = 28). Genome size and chromosome number are confirmed as crucial parameters for deciphering lineage diversification within the genus Echinops.

Keywords

Compositae Flow cytometry Karyology Phylogeny 

Notes

Acknowledgments

We thank Dr. K. Tan, Dr. J. Vigo, and Dr. F. Pustahija for their help in collecting material, M. Veny for taking care of the living plants, M. Mumbrú, Dr. J. Comas, and Dr. R. Álvarez for their support in the flow cytometry assessments, and an anonymous reviewer for useful comments. Alastair Plant is also acknowledged for the revision of the English in the manuscript. This work was supported by the MICINN of the Spanish Government (projects CGL2007-64839-C02-01, CGL2007-64839-C02-02, CGL2010-22234-C02-01/BOS, and CGL2010-22234-C02-02/BOS) and the GReB (Grup de Recerca en Biodiversitat i Biosistemàtica Vegetals; Generalitat de Catalunya, project 2009SGR439). I.S.-J. received a FPU grant from the Ministerio de Educación and O.H. a Juan de la Cierva postdoctoral grant from the Ministerio de Ciencia e Innovación, Spain.

References

  1. Bainard JD, Husband BC, Baldwin SJ, Fazekas AJ, Gregory TR, Newmaster SG, Kron P (2011) The effects of rapid desiccation on estimates of plant genome size. Chromosome Res 19:825–842PubMedGoogle Scholar
  2. Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc R Soc Lond Ser B 181:109–135Google Scholar
  3. Bobrov EG (1997) Echinops L. In: Shishkin BK, Bobrov EG (eds) Flora of the URRS, vol 27. Dehra Dun, Bishen Singh, Mahendra Pal Singh, Koeltz Scientific Books, Koenigstein, pp 1–70Google Scholar
  4. Chase MW, Hanson L, Albert VA, Whitten WM, Williams NH (2005) Life history evolution and genome size in subtribe Oncidiinae (Orchidaceae). Ann Bot 95:191–199PubMedGoogle Scholar
  5. Chrtek J, Zahrádníček J, Krak K, Fehrer J (2009) Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Ann Bot 104:161–178PubMedGoogle Scholar
  6. Cires E, Cuesta C, Peredo EL, Revilla MA, Fernández Prieto JA (2009) Genome size varition and morphological differentiation within Ranunculus parnassifolius group (Ranunculaceae) from calcareous screes in the Northwest of Spain. Plant Syst Evol 281:193–208Google Scholar
  7. Cullings KW (1992) Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Mol Ecol 1:233–240Google Scholar
  8. Díaz-Uriarte R (2010) Package PHYLOGR, http://cran.es.r-project.org
  9. Doležel J (1991) Flow cytometric analysis of nuclear DNA content in higher plants. Phytochem Anal 2:143–154Google Scholar
  10. Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110PubMedGoogle Scholar
  11. Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120Google Scholar
  12. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  13. Dušková E, Kolář F, Sklenář P, Rauchová J, Kubešová M, Fér T, Suda J, Marhold K (2010) Genome size correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia 82:127–148Google Scholar
  14. Garcia S, Canela MÁ, Garnatje T, McArthur ED, Pellicer J, Sanderson SC, Vallès J (2008) Evolutionary and ecological implications of genome size in the North American endemic sagebrushes and allies (Artemisia, Asteraceae). Biol J Linn Soc 94:631–649Google Scholar
  15. Garcia S, Sanz M, Garnatje T, Kreitschitz A, McArthur DE, Vallès J (2004) Variation of DNA amount in 47 populations of the subtribe Artemisiinae and related taxa (Asteraceae, Anthemideae): karyological, ecological, and systematic implications. Genome 47:1004–1014PubMedGoogle Scholar
  16. Garcia-Jacas N, Susanna A, Ilarlsan R (1996) Aneuploidy in the Centaureinae (Compositae): is n = 7 the end of the series? Taxon 45:39–42Google Scholar
  17. Garnatje T, Canela MÁ, Garcia S, Hidalgo O, Pellicer J, Sánchez-Jiménez I, Siljak-Yakovlev S, Vitales D, Vallès J (2011) GSAD: a genome size in the Asteraceae database. Cytometry Part A 79A:401–404Google Scholar
  18. Garnatje T, Garcia S, Canela MÁ (2007) Genome size variation from a phylognetic perspective in the genus Cheirolophus Cass. (Asteraceae): biogeographic implications. Plant Syst Evol 264:117–134Google Scholar
  19. Garnatje T, Garcia S, Hidalgo O, Pellicer J, Sánchez-Jiménez I, Vallès J (2009) Cheirolophus intybaceus (Asteraceae, Centaureinae) o la constància del valor 2C. Collect Bot 28:7–17Google Scholar
  20. Garnatje T, Vallès J, Garcia S, Hidalgo O, Sanz M, Canela MA, Siljak-Yakovlev S (2004a) Genome size in Echinops L. and related genera (Asteraceae, Cardueae): karyological, ecological and phylogenetic implications. Biol Cell 96:117–124PubMedGoogle Scholar
  21. Garnatje T, Vilatersana R, Susanna A, Vallès J, Siljak-Yakovlev S (2004b) Contribution to the karyological knowledge of Echinops (Asteraceae, Cardueae) and related genera. Bot J Linn Soc 145:337–344Google Scholar
  22. Georghiou K, Delipetrou P (2010) Patterns and traits of the endemic plants of Greece. Bot J Linn Soc 162:130–422Google Scholar
  23. Greilhuber J, Temsch E, Loureiro J (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH, Weinheim, pp 67–101Google Scholar
  24. Greuter W (2003) The Euro + Med treatment of Cardueae (Compositae)—generic concepts and required new names. Willdenowia 33:49–61Google Scholar
  25. Greuter W (2006–2009) Compositae (pro parte majore), In: Greuter W, Raab-Straube E. von (eds) Compositae. Euro + Med Plantbase—the information resource for Euro-Mediterranean plant diversity. Published on the Internet http://ww2.bgbm.org/EuroPlusMed/ (Accesed 1 March 2011)
  26. Gukasyan AG, Safarian AB (1990) Chromosome numbers of some representatives of Armenian flora. Biol Zh Arm 43:259–260Google Scholar
  27. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  28. Hayek A (1927) Prodomus florae peninsulae balcanicae, vol 2. Verlag, BerlinGoogle Scholar
  29. Hedge IC (1975) Echinops L. In: Davis PH (ed) Flora of Turkey and the East Aegean Islands, vol 5. Edinburgh University Press, Edinburgh, pp 609–622Google Scholar
  30. Hidalgo O, Garcia-Jacas N, Garnatje T, Romaschschenko K, Susanna A, Siljak-Yakovlev S (2008) Extreme environmental conditions and phylogenetic inheritance: systematics of Myopordon and Oligochaeta (Asteraceae, Cardueae-Centaureinae). Taxon 57:769–778Google Scholar
  31. Hidalgo O, Garcia-Jacas N, Susanna A, Siljak-Yakovlev S (2007) Karyological evolution in Rhaponticum and related genera. Bot J Linn Soc 153:193–201Google Scholar
  32. Hidalgo O, Mathez J, Garcia S, Garnatje T, Pellicer J, Vallès J (2010) Genome size study in the Valerianaceae: first results and new hypotheses. J Bot. doi: 10.1155/2010/797246 Google Scholar
  33. Jäger EJ (1987) Arealkarten der Asteraceen-Tribus als Grundlage der ökogeographischen Sippencharakteristik. Bot Jahrb Syst 108:481–497Google Scholar
  34. Kožuharov SI (1976) Echinops L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 4. Cambridge University Press, Cambridge, pp 212–214Google Scholar
  35. Kraaijeveld K (2010) Genome size and species diversification. Evol Biol 37:227–233PubMedGoogle Scholar
  36. Lavergne S, Muenke NJ, Molofsky J (2010) Genome size reduction can trigger rapid phenotypic evolution in invasive plants. Ann Bot 105:109–116PubMedGoogle Scholar
  37. Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across land plants (Embryophyta). Ann Bot 95:207–217PubMedGoogle Scholar
  38. Magyari EK, Chapman JC, Gaydarska B, Marinova E, Deli T, Huntley JP, Allen JRM, Huntley B (2008) The “oriental” component of the Balkan flora: evidence of presence on the Thracian Plain during the Weichselian late-glacial. J Biogeogr 35:865–883Google Scholar
  39. Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann Mo Bot Gard 84:112–127Google Scholar
  40. Muratovic E, Hidalgo O, Garnatje T, Siljak-Yakovlev S (2010) Molecular phylogeny and genome size in European lilies (genus Lilium, Liliaceae). Adv Sci Lett 3:180–189Google Scholar
  41. Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot 95:119–125PubMedGoogle Scholar
  42. Nylander JAA (2004) MrModeltest, version 2. Program distributed by the author, Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  43. Ohri D (1998) Genome size variation and plant systematics. Ann Bot 82:75–83Google Scholar
  44. Palomino G, Doležel J, Méndez I, Rubluo A (2003) Nuclear genome size analysis of Agave tequilana Weber. Caryologia 56:37–46Google Scholar
  45. Pellicer J, Canela MÁ, Garcia S, Garnatje T, Korobkov AA, Twibell JD, Vallès J (2010) Genome size dynamics in Artemisia L. (Asteraceae): following the track of polyploidy. Plant Biol 12:820–830PubMedGoogle Scholar
  46. Petit RJ, Brewer S, Bordács S et al (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manage 156:49–74Google Scholar
  47. Popp M, Gizaw A, Nemomissa S, Suda J, Brochmann C (2008) Colonization and diversification in the African ‘sky islands’ by Eurasian Lychnis L. (Caryophyllaceae). J Biogeogr 35:1016–1029Google Scholar
  48. Price HJ, Bachmann K (1976) Mitotic cell time and DNA content in annual and perennial Microserinidinae (Compositae, Chicoriaceae). Plant Syst Evol 126:323–330Google Scholar
  49. Rechinger KH (1943) Flora Aegaea: Flora der Inseln und Halbinseln des Ägäischen Meeres. Springer, ViennaGoogle Scholar
  50. Rechinger KH (ed) (1979) Flora des Iranischen Hochlandes und der umrahmeden Gebirge. Compositae III-Cynareae, Akademische Druck-u, Verlaganstalt, GrazGoogle Scholar
  51. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedGoogle Scholar
  52. Sánchez-Jiménez I, Lazkov GA, Hidalgo O, Garnatje T (2010) Molecular systematics of Echinops L. (Asteraceae, Cynareae): a phylogeny based on ITS and trnL-trnF sequences with emphasis on sectional delimitation. Taxon 59:698–708Google Scholar
  53. Sánchez-Jiménez I, Pellicer J, Hidalgo O, Garcia S, Garnatje T, Vallès J (2009) Chromosome numbers in three Asteraceae tribes from inner Mongolia (China), with genome size data for Cardueae. Folia Geobot 44:307–322Google Scholar
  54. Sheidai M, Nasirzadeh A, Kheradnam M (2000) Karyotypic study of Echinops (Asteraceae) in Fars Province, Iran. Bot J Linn Soc 134:453–463Google Scholar
  55. Siljak-Yakovlev S, Solic ME, Catrice O, Brown SC, Papes D (2005) Nuclear DNA content and chromosome number in some diploid and tetraploid Centaurea (Asteraceae: Cardueae) from the Dalmatia region. Plant Biol 7:397–404PubMedGoogle Scholar
  56. Siljak-Yakovlev S, Stevanovic V, Tomasevic M, Brown SC, Stevanovic B (2008) Genome size variation and polyploidy in the resurrection plant genus Ramonda: cytogeography of living fossils. Environ Exp Bot 62:101–112Google Scholar
  57. Siljak-Yakovlev S, Pustahija F, Solic EM, Bogunic F, Muratovic E, Basic N, Catrice O, Brown SC (2010) Towards a genome size and chromosome number database of Balkan Flora: C-values in 343 taxa with novel values for 242. Adv Sci Lett 3:190–213Google Scholar
  58. Slovák M, Urfus T, Vít P, Marhold K (2009) The Balkan endemic Picris hispidissima (Compositae): morphology, nuclear DNA content and relationship to the polymorphic P. hieracioides. Plant Syst Evol 278:187–201Google Scholar
  59. Soltis DE, Soltis PS, Collier TG, Edgerton ML (1991) The Heuchera group (Saxifragaceae): evidence for chloroplast transfer and paraphyly. Am J Bot 78:1091–1112Google Scholar
  60. Stevanovic V, Tan K, Iatrou G (2003) Distribution of the endemic Balkan flora on serpentine I.—obligate serpentine endemics. Plant Syst Evol 242:149–170Google Scholar
  61. Suda J, Trávníček P (2006) Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry—New prospects for plant research. Cytom Part A 69A:273–280Google Scholar
  62. Susanna A, Garcia-Jacas N, Hidalgo O, Vilatersana R, Garnatje T (2006) The Cardueae revisited: insights from ITS, trnL-F and matK nuclear and chloroplast DNA analysis. Ann Mo Bot Gard 93:150–171Google Scholar
  63. Swift H (1950) The constance of desoxyribose nucleic acid in plant nuclei. Proc Natl Acad Sci USA 36:643–654PubMedGoogle Scholar
  64. Temsch EM, Greilhuber J (2010) Genome size in Dipsacaceae and Morina longifolia (Morinaceae). Plant Syst Evol 289:45–56Google Scholar
  65. Vilatersana R, Susanna A, Garcia-Jacas N, Garnatje T (2000) Karyology, generic delineation and dysploidy in the genera Carthamus, Carduncellus and Phonus (Asteraceae). Bot J Linn Soc 134:425–438Google Scholar
  66. Vinogradov AE (2003) Selfish DNA is maladaptive: evidence from the plant Red List. Trends Genet 19:609–614PubMedGoogle Scholar
  67. Watanabe K (2002) Index to chromosome numbers in the Asteraceae. http://www-asteraceae.cla.kobe-u.ac.jp/index.html (Accessed May 2011)
  68. Watanabe K (2004) Index to chromosome numbers in the Asteraceae on the web. Compositae Newsl 41:64Google Scholar
  69. Zhu S, Greuter W (2011) Asteraceae. Tribe Echinopeae [draft]. In: Wu ZY, Raven PH, Hong DY (eds) In preparation, flora of China (Asteraceae), vol 20–21. Science Press, Beijing, and Missouri Botanical Garden Press, St. LouisGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ismael Sánchez-Jiménez
    • 1
  • Oriane Hidalgo
    • 2
    • 3
  • Miguel Ángel Canela
    • 4
  • Sonja Siljak-Yakovlev
    • 5
  • Marija Edita Šolić
    • 6
  • Joan Vallès
    • 3
  • Teresa Garnatje
    • 1
  1. 1.Institut Botànic de Barcelona (IBB-CSIC-ICUB)BarcelonaSpain
  2. 2.Department of Environmental and Plant Biology, Plant Development and EvolutionOhio UniversityAthensUSA
  3. 3.Laboratori de Botànica, Facultat de FarmàciaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Managerial Decision Sciences, IESE Business SchoolUniversidad de NavarraBarcelonaSpain
  5. 5.Unité Ecologie, Systématique and Evolution, UMR CNRS 8079, AgroParisTechUniversité Paris-SudOrsay CedexFrance
  6. 6.Institute “Mountain and Sea”MakarskaCroatia

Personalised recommendations