Skip to main content
Log in

Genetic structure of Eurasian and North American Leymus (Triticeae) wildryes assessed by chloroplast DNA sequences and AFLP profiles

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Leymus is a genomically defined allopolyploid of genus Triticeae with two distinct subgenomes. Chloroplast DNA sequences of Eurasian and North American species are distinct and polyphyletic. However, phylogenies derived from chloroplast and nuclear DNA sequences are confounded by polyploidy and lack of polymorphism among many taxa. The AFLP technique can resolve phylogenetic relationships between closely related species, with a curvilinear relationship expected between the proportion of shared bands and nucleotide substitution rate (D), up to about 0.100 D. The objective of this study was to compare D and phylogenetic relationships among 16 Leymus taxa, based on chloroplast DNA sequences and multi-locus AFLP genotypes. Estimates of chloroplast D between taxa were 0.002 and 0.013 within and among continental regions, respectively. Estimates of AFLP D between taxa were 0.076 and 0.093 compared within and between continental regions, respectively, versus 0.024 within taxa. Bayesian and neighbor-joining cluster analyses effectively separated all AFLP genotypes by species, but showed that North American L. ambiguus is a hybrid species with nearly equal contributions from sympatric L. cinereus and L. salinus taxa. Two hierarchical AFLP clades, containing six North American taxa and four Eurasian taxa, had more than 98% bootstrap confidence with 0.071 and 0.055 D among taxa. Three other Eurasian taxa clustered with 79% and 89% confidence, with up to 0.79 D between taxa. These estimates provide benchmarks for phylogenetic comparisons of AFLP profiles, but three taxa could not be reliably grouped, which may reflect concurrent radiation of multiple lineages or lack of homologous AFLP characters caused by a high D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aggarwal RK, Brar DS, Nandi S, Huang N, Khush GS (1999) Phylogenetic relationships among Oryza species revealed by AFLP markers. Theor Appl Genet 98:1320–1328

    Article  CAS  Google Scholar 

  • Anamthawat-Jonsson K (2005) The Leymus NS-genome. Czech J Genet Plant Breed 41:13–20

    Google Scholar 

  • Anamthawat-Jonsson K, Bodvarsdottir SK (2001) Genomic and genetic relationships among species of Leymus (Poaceae: Triticeae) inferred from 18S–26S ribosomal genes. Am J Bot 88:553–559

    Article  PubMed  CAS  Google Scholar 

  • Atkins RJ, Barkworth ME (1984) A taxonomic study of Leymus ambiguus and L. salinus (Poaceae: Triticeae). Syst Bot 9:279–294

    Article  Google Scholar 

  • Bentham G (1881) Notes on Gramineae. Bot J Linn Soc 19:14–134

    Article  Google Scholar 

  • Bodvarsdottir SK, Anamthawat-Jonsson K (2003) Isolation, characterization, and analysis of Leymus-specific DNA sequences. Genome 46:673–682

    Article  PubMed  CAS  Google Scholar 

  • Culumber CM (2007) DNA barcoding of western North American taxa: Leymus (Poaceae) and Lepidium (Brassicaceae). Thesis, Utah State University

  • Dewey DR (1970) Genome relations among diploid Elymus junceus and certain tetraploid and octoploid Elymus species. Am J Bot 57:633–639

    Article  Google Scholar 

  • Dewey DR (1972) Cytogenetics of tetraploid Elymus cinereus, E. triticoides, E. multicaulis, E. karatviensis, and their F1 hybrids. Bot Gaz 133:51–57

    Article  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Proceedings of the 16th Stadler Genetics Symposium. Plenum, New York, pp 209–279

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE; a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol 7:574–578

    Article  CAS  Google Scholar 

  • Fan X, Sha LN, Yang RW, Zhang HQ, Kang HY, Ding CB, Zhang YL, Zhou YH (2009) Phylogeny and evolutionary history of Leymus (Triticeae: Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase. BMC Evol Biol 9:247

    Article  PubMed  Google Scholar 

  • García-Pereira MJ, Caballero A, Quesada H (2010) Evaluating the relationship between evolutionary divergence and phylogenetic accuracy in AFLP data sets. Mol Biol Evol 27:988–1000

    Article  PubMed  Google Scholar 

  • Hitchcock AS (1951) Manual of the grasses of the United States, 2nd edn (revised by Chase A). USDA Miscellaneous Publication No. 200

  • Hole DJ, Jensen KB (1999) Molecular marker analysis of Leymus flavescens and chromosome pairing in Leymus flavescens hybrids (Poaceae: Triticeae). Int J Plant Sci 160:371–376

    Article  CAS  Google Scholar 

  • Innan H, Terauchi R, Kahl G, Tajima F (1999) A method for estimating nucleotide diversity from AFLP data. Genetics 151:1157–1164

    PubMed  CAS  Google Scholar 

  • Jones TA, Redinbaugh MG, Zhang Y (1999) The western wheatgrass chloroplast genome originates in Pseudoroegneria. Crop Sci 40:43–47

    Article  Google Scholar 

  • Jones TA, Larson SR, Wilson BL (2008) Genetic differentiation and admixture among Festuca idahoensis, F. roemerii, and F. ovina detected in AFLP, ITS, and chloroplast DNA. Genome 86:422–434

    CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Koopman WJM, Wissemann V, De Cock K, Huylenbroeck JV, Riek JD, Sabatino GJH, Vissler D, Vosman B, Ritz CM, Maes B, Werlemark G, Nybom H, Debner T, Linde M, Smulders MJM (2008) AFLP markers as a tool to reconstruct complex relationships: a case study in Rosa (Rosaceae). Am J Bot 95:353–366

    Article  PubMed  CAS  Google Scholar 

  • Larson SR, Jones TA, Hu ZM, McCracken CL, Palazzo A (2000) Genetic diversity of bluebunch wheatgrass cultivars and a multiple-origin polycross. Crop Sci 40:1142–1147

    Article  CAS  Google Scholar 

  • Larson SR, Jones TA, McCracken CL, Jensen KB (2003) Amplified fragment length polymorphism in Elymus elymoides, Elymus multisetus, and other Elymus taxa. Can J Bot 81:789–804

    Article  CAS  Google Scholar 

  • Larson SR, Jones TA, Jensen KB (2004) Population structure in Pseudoroegneria spicata (Poaceae: Triticeae) modeled by Bayesian clustering of AFLP genotypes. Am J Bot 91:1789–1801

    Article  PubMed  CAS  Google Scholar 

  • Larson SR, Scheuring C, Kaur P, Cliften PF, Mott IW, Bushman BS, Dong JJ, Zhang Y, Zhang X, Kiani M, Wu YH, Liu YH, Zhang HB, Chatterton NJ, Wang RRC (2009) BAC library development for allotetraploid Leymus (Triticeae) wildryes enable comparative genetic analysis of lax-barrenstalk1 orthogene sequences and growth habit QTLs. Plant Sci 177:427–438

    Article  CAS  Google Scholar 

  • Liu Z, Chen Z, Pan J, Li X, Su M, Wang L, Li H, Liu G (2008) Phylogenetic relationships in Leymus (Poaceae: Triticeae) revealed by the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. Mol Phyl Evol 46:278–289

    Article  CAS  Google Scholar 

  • Löve Á (1984) Conspectus of the Triticeae. Feddes Repert 95:425–521

    Google Scholar 

  • McKenzie RJ, Muller EM, Skinner AKW, Karis PO, Barker NP (2006) Phylogenetic relationships and generic delimitation in subtribe Arctotidinae (Asteraceae: Arctotideae) inferred by DNA sequence data from ITS and five chloroplast regions. Am J Bot 93:1222–1235

    Article  PubMed  CAS  Google Scholar 

  • Mori N, Moriguchi T, Nakamura C (1997) RFLP analysis of nuclear DNA for study of phylogeny and domestication of tetraploid wheat. Genes Genet Syst 72:153–161

    Article  CAS  Google Scholar 

  • Moyle LC (2006) Correlates of genetic differentiation and isolation by distance in 17 congeneric Silene species. Mol Ecol 15:1067–1081

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Petit R, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701

    Article  PubMed  CAS  Google Scholar 

  • Pleines T, Blattner FR (2008) Phylogeographic implications of an AFLP phylogeny of the American diploid Hordeum species (Poaceae: Triticeae). Taxon 57:875–881

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Interface of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Redinbaugh MG, Jones TA, Zhang Y (2000) Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids. Genome 43:846–852

    Article  PubMed  CAS  Google Scholar 

  • Sha L, Yang R, Fan X, Wang X, Zhou Y (2008) Phylogenetic analysis of Leymus (Poaceae: Triticeae) inferred from nuclear rDNA ITS sequences. Biochem Genet 46:605–619

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Johnson A, Looney DC (1996) Discordance between ITS and chloroplast topologies in the Boykinia group (Saxifragaceae). Syst Bot 21:169–185

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4b10. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang RRC, Jensen KB (1994) Absence of the J genome in Leymus species (Poaceae: Triticeae): evidence from DNA hybridization and meiotic pairing. Genome 37:231–235

    Article  PubMed  CAS  Google Scholar 

  • Wang RRC, Von Bothmer R, Dvorak J, Linde-Laursen I, Muramatsu M (1994) Genome symbols in the Triticeae (Poaceae). In: Wang RRC, Jensen KB, Jaussi C (eds) Proceedings of the 2nd International Triticeae Symposium, Logan, UT, 20–24 June. Utah State University Press, Logan, UT, pp 29–31

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A 84:9054–9058

    Article  PubMed  CAS  Google Scholar 

  • Wu XM, Larson SR, Hu ZM, Palazzo AJ, Jones TA, Wang RRC, Jensen KB, Chatterton NJ (2003) Molecular genetic linkage maps for allotetraploid Leymus wildryes (Gramineae: Triticeae). Genome 46:627–646

    Article  PubMed  CAS  Google Scholar 

  • Yang RW, Zhou YH, Ding CB, Zheng YL, Zhang L (2008) Relationships among Leymus species assessed by RAPD markers. Biol Plant 52:237–241

    Article  CAS  Google Scholar 

  • Zhang HB, Dvorak J (1991) The genome origin of tetraploid species of Leymus (Poaceae: Triticeae) inferred from variation in repeated nucleotide sequences. Am J Bot 78:871–884

    Article  Google Scholar 

  • Zhou X, Yang X, Li X, Li L (2010) Genome origins in Leymus (Poaceae: Triticeae): evidence of maternal and paternal progenitors and implications for reticulate evolution. Plant Syst Evol 289:165–179

    Article  Google Scholar 

  • Zuriaga E, Blanca J, Nuez F (2009) Classification and phylogenetic relationships in Solanum section Lycopersicon based on AFLP and two nuclear gene sequences. Genet Resour Crop Evol 56:663–678

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the US Department of Interior, Bureau of Land Management, Great Basin Native Plant Selection and Increase Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Larson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 32 kb)

Supplementary material 2 (TXT 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Culumber, C.M., Larson, S.R., Jensen, K.B. et al. Genetic structure of Eurasian and North American Leymus (Triticeae) wildryes assessed by chloroplast DNA sequences and AFLP profiles. Plant Syst Evol 294, 207–225 (2011). https://doi.org/10.1007/s00606-011-0455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0455-x

Keywords

Navigation