Skip to main content
Log in

Embryology of Iris mandshurica Maxim. (Iridaceae) and its systematic relationships

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Sporogenesis, gametogenesis, fertilization and embryogenesis of Iris mandshurica Maxim. were observed using the normal paraffin method. The results are as follows: the development of the anther wall following the dicotyledonous type consisting of four layers, the epidermis, the endothecium, one middle layer and the secretory tapetum. Fibrous thickenings develop in the endothecium when the anther is shed. Simultaneous cytokinesis during microsporogenesis results in a tetrahedral tetrad of microspores. Mature pollen grains are two-celled. The ovary is inferior and trilocular with axial placenta. The ovule is anatropous, bitegminous and crassinucellate. The archesporial cell below the nucellar epidermis undergoes periclinal division producing the primary parietal cell and the primary sporogenous cell. The primary parietal cell participates in the nucellar formation; the primary sporogenous cell differentiates directly as the megasporocyte. Successive cytokinesis in the megasporocyte usually produces the linear tetrad, and the chalazal megaspore of the tetrad develops into a Polygonum-type embryo sac. The fertilization mode is porogamy. The pollen tube enters into the embryo sac and discharges two sperm 16–20 h after pollination. The fertilization is the postmitotic type of syngamy. The first division of the zygote is transversal. Endosperm formation is of the nuclear type. The systematic significance of the embryological characters of I. mandshurica is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APG (1998) An ordinal classification for the families of flowering plants. Ann Mo Bot Gard 85:531–553

    Article  Google Scholar 

  • APG II (angiosperm phylogeny group) (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plant. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • Arekal GD, Karanth KA (1981) The Embryology of Epipocjium roseum (Orchidaceae). Plant Syst Evol 138:1–7

    Article  Google Scholar 

  • Ashurmetov OA, Yengalychevai SS, Fritsch RDM (2001) Morphological and embryological characters of three middle Asian Allium L. species (Alliaceae). Bot J Linn Soc 137:51–64

    Article  Google Scholar 

  • Berg RY (1996) Development of ovule, embryo sac, and endosperm in Dipterostemon and Dichelostemma (Alliaceae) relative to taxonomy. Am J Bot 83:790–801

    Article  Google Scholar 

  • Bouman F (1984) The ovule. In: Johri BM (ed) Embryology of angiosperms. Springer, New York, pp 123–157

    Google Scholar 

  • Chichiriccò G (1989) Embryology of Crocus thomasii (Iridaceae). Plant Syst Evol 168:39–47

    Article  Google Scholar 

  • Chichiriccò G (1993) Pregamic and postgamic self-incompatibility systems in Crocus (Iridaceae). Plant Syst Evol 185:219–227

    Article  Google Scholar 

  • Chichiriccò G, Ragnelli AM, Aimola P (2002) Ovary–ovule transmitting tract in Crocus (Iridaceae), structure and calcium distribution. Plant Syst Evol 235:155–167

    Article  Google Scholar 

  • Cronquist A (1988) The evolution and classification of flowering plants, 2nd edn. New York Botanical Garden, New York

    Google Scholar 

  • Davis GL (1966) Systematic embryology of the angiosperms. Wiley, New York

    Google Scholar 

  • Eames AJ (1961) Morphology of the angiosperms. NewYork, McGraw-Hill

  • Endress PK, Igersheim A (2000) Gynoecium structure and evolution in basal angiosperms. Int J Plant Sci 161(Suppl):S211–S223

    Article  Google Scholar 

  • Fredrikson M (1991) An embryological study of Platanthera bifolia (Orchidaceae). Plant Syst Evol 174:213–220

    Article  Google Scholar 

  • Furness CA, Rudall PJ (2001) Pollen and anther characters in monocot systematics. Grana 40:17–25

    Article  Google Scholar 

  • Goldblatt P, Rodriguez A, Powell MP, Davies TJ, Manning JC, Van Der Bank M, Savolainen V (2008) Iridaceae ‘out of Australasia’? Phylogeny, biogeography, and divergence time based on plastid DNA sequences. Syst Bot 33:495–508

    Article  Google Scholar 

  • Hao LZ, Yang ZR, Wang LY, Zhao QY, Zhang FL (2005) Observation on flower’s morphological and anther’s anatomy character of three Allium plants. Bull Bot Res 25:277–280

    Google Scholar 

  • Herr JR (1984) Embryology and taxonomy. In: Johri BM (ed) Embryology of angiosperms. Springer, New York, pp 645–696

    Google Scholar 

  • Holford P, Croft J, Newbury HJ (1991) Structural studies of microsporogenesis in fertile and male-sterile onions (Allium cepa L.) containing the cms-s cytoplasm. Theor Appl Genet 82:745–755

    Google Scholar 

  • Hu SY (2005) Reproductive biology of angiosperms. China Higher Education Press, Beijing

    Google Scholar 

  • Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of angiosperms, vol 2. Springer, New York

  • Kozyrenko MM, Artiukova EV, Zhuravlev IN (2009) Independent species status of Iris vorobievii NS Pavlova Iris mandshurica Maxim., and Iris humilis Georgi (Iridaceae): evidence from the nuclear and chloroplast genomes. Genetika 45:1575–1584

    PubMed  CAS  Google Scholar 

  • Lakshmanan KK, Philip VJ (1971) A Contribution to the embryology of Iridaceae. Plant Sci 71:110–116

    Google Scholar 

  • Lee YI, Yeung EC, Lee N, Chung MC (2008) Embryology of Phalaenopsis amabilis var formosa: embryo development. Bot Stud 49:139–146

    Google Scholar 

  • Li L, Liang HX, Peng H, Lei LG (2003) Sporogenesis and gametogenesis in Sladenia and their systematic implication. Bot J Linn Soc 143:305–314

    Article  Google Scholar 

  • Li N, Dong YZ, Liang FL (2005) Studies on microsporogenesis and the formation of malegametophyte in Iris blowdowill. Bull Bot Res 25:140–143

    Google Scholar 

  • Mu SH (2005) Studies on the systematic position of some Iris plants in China (in Chinese with English abstract). Ph.D. dissertation. Chinese Academy of Forestry

  • Musiali K, Bohanec B, Jakse M, Przywara L (2005) The development of onion (Allium cepa L.) Embryo sacs in vitro and gynogenesis induction in relation to flower size. In Vitro Cell Dev Biol Plant 41:446–452

    Article  Google Scholar 

  • Palser BF (1975) The base of angiosperm phylogeny: embryology. Ann Mo Bot Gard 62:621–644

    Article  Google Scholar 

  • Penet L, Nadot S, Ressayre A, Forchioni A, Dreyer L, Gouyon PH (2005) Multiple developmental pathways leading to a single morph: monosulcate pollen (examples from the asparagales). Ann Bot 95:331–343

    PubMed  CAS  Google Scholar 

  • Penet L, Laurin M, Gouyon PH, Nadot S (2007) Constraints and selection: insights from microsporogenesis in asparagales. Evol Dev 9:460–471

    Article  PubMed  Google Scholar 

  • Peter G, Manning J (2008) The iris family: natural history and classification. Timber Press, Portland

    Google Scholar 

  • Riley HP (1942) Development of the embryo sac of Iris fulva and I hexagona var. giganticaerulea. Trans Am Microsc Soc 61:328–335

    Article  Google Scholar 

  • Rudall PJ, Owens SJ, Kenton AY (1984) Embryology and Breeding Systems in Crocus (Iridaceae)—a study in causes of chromosome variation. Plant Syst Evol 148:119–134

    Article  Google Scholar 

  • Rudall PJ, Furness CA, Chase MW, Fay MF (1997) Microsporogenesis and pollen sulcus type in Asparagales (Lilianae). Can J Bot 75:408–430

    Article  Google Scholar 

  • Rudall PJ, Engleman EM, Hanson L, MW CHASE (1998) Embryology, cytology and systematics of Hemiphylacus, Asparagus and Anemarrhena (Asparagales). Plant Syst Evol 211:181–199

    Article  Google Scholar 

  • Shen YG, Wang ZL, Guan KY (2007) Karyotypical studies on thirteen Iris plants from China. Acta Phytotaxon Sinica 45(5):601–618

    Article  Google Scholar 

  • Sogo A, Tobe H (2006) The evolution of fertilization modes independent of the micropyle in fagales and ‘pseudoporogamy’. Plant Syst Evol 259:73–80

    Article  Google Scholar 

  • Sood SK (1989) Embryology and systematic position of Liparis (Orchidaceae). Plant Syst Evol 166:1–9

    Article  Google Scholar 

  • Sood SK (1992) Embryology of Malaxis saprophyta, with comments on the systematic position of Malaxis (Orchidaceae). Plant Syst Evol 179:95–105

    Article  Google Scholar 

  • Sood SK, Mohana Rao PR (1988) Studies in the embryology of the diandrous orchid Cypripedium cordigerum (Cypripedieae, Orchidaceae). Plant Syst Evol 160:159–168

    Article  Google Scholar 

  • Stebbins GL (1974) Flowering plants: evolution above the species level. Belknap Press of Harvard University, Cambridge

    Google Scholar 

  • Takhtajan A (1980) Outline of the classification of flowering plants (Magnoliophya). Bot Rev 46:225–359

    Article  Google Scholar 

  • Takhtajan A (1991) Evolutionary trends in flowering plants. Columbia University Press, New York

    Google Scholar 

  • Thorne RF (1992) Classification and geography of flowering plants. Bot Rev 58:225–348

    Article  Google Scholar 

  • Tian HQ, Yang HY (1991) Embryo sac development and embyrogeny in Allium Tuberosum. J Wuhan Bot Res 9:5–12

    Google Scholar 

  • Tobe H (1989) The Embryology of angiosperms: its broader application to the systematic and evolutionary study. Bot Mag (Tokyo) 102:351–367

    Article  Google Scholar 

  • Wang L (2005) Study on development biology and systematic evolution of some species of Iris (in chinese with english abstract). Ph.D. dissertation, Northeast Forestry University

  • Wang ZF, Ren Y (2007) Advances in the study of the angiosperm ovule. Chin Bull Bot 24(1):49–59

    Google Scholar 

  • Wang L, Zhuo LH (2006) The relationship between seed coat micro-morphology characteristics and systematic evolution of some species of Iris. Bull Bot Res 26:286–290

    Google Scholar 

  • Wilson CA (2001) Floral stages, ovule development, and ovule and fruit success in Iris tenax focusing on var gormanii, a taxon with low seed set. Am J Bot 88:2221–2231

    Article  Google Scholar 

  • Winiarczyk K, Kosmala A (2009) Development of the female gametophyte in the sterile ecotype of the bolting Allium sativum L. Sci Hortic 121:353–360

    Article  Google Scholar 

  • Yamada T, Tobe H, Imaichi R, Kato M (2001) Developmental morphology of the ovules of Amborella trichopoda (Amborellaceae)and Chloranthus serratus (Chloranthaceae). Bot J Linn Soc 137:277–290

    Article  Google Scholar 

  • Zhang D, Zhuo LH, Shen XH (2010) Sporogenesis and gametogenesis in Agapanthus praecox Willd. orientalis (Leighton) Leighton and their systematic implications. Plant Syst Evol 288:1–11

    Article  Google Scholar 

Download references

Acknowledgments

This study enjoyed generous support from the National Science Fund of China (30872062), the Research Fund for the Doctoral Program of Higher Education of China (200802250010), China Postdoctoral Science Foundation (20070420893), the Fundamental Research Funds for the Central Universities (DL09CA10), Natural Science Foundation of Heilongjiang Province of China (42400625–4–08005) and the Key Project of Harbin Science and Technology Bureau (2008AA6CN090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Wang or Li-huan Zhuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Wang, L. & Zhuo, Lh. Embryology of Iris mandshurica Maxim. (Iridaceae) and its systematic relationships. Plant Syst Evol 293, 43–52 (2011). https://doi.org/10.1007/s00606-011-0427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0427-1

Keywords

Navigation