Skip to main content

Advertisement

Log in

Phylogenetic relationships among New World Scrophularia L. (Scrophulariaceae): new insights inferred from DNA sequence data

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The genus Scrophularia L. (Scrophulariaceae) comprises 200–300 species, of which approximately 19 are distributed in North America and the Greater Antilles. To investigate phylogenetic and biogeographic relationships of the New World species, two intergenic spacers (trnQ-rps16 and psbA-trnH) of chloroplast DNA and nuclear ribosomal ITS were sequenced. Phylogenetic analyses revealed three distinct New World clades that correspond to their geographical distribution and are corroborated by morphological characters. Phylogenetic inference indicates the eastern American S. marilandica L. as sister to all Antillean species; for colonization of the Caribbean archipelago, a late Miocene dispersal event from the North American mainland is assumed. There is evidence for a hybrid origin of the most widespread North American species, S. lanceolata Pursh. The results further suggest that S. nodosa L. is sister to all New World and three Japanese species of Scrophularia. The latter form an Eastern Asian–Eastern North American (EA-ENA) disjunction with six New World species. We propose an eastern Asian origin for the New World taxa of Scrophularia. Divergence times estimated using a relaxed molecular clock model suggest one or more Miocene migration events from eastern Asia to the New World via the Bering Land Bridge followed by diversification in North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albach DC, Chase MW (2001) Paraphyly of Veronica (Veronicaceae, Scrophulariaceae): evidence from internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. J Plant Res 114(1):9–18

    Article  CAS  Google Scholar 

  • Albach DC, Meudt HM, Oxelman B (2005) Piecing together the “new” Plantaginaceae. Am J Bot 92(2):297–315

    Article  Google Scholar 

  • Barker FK, Lutzoni FM (2002) The utility of the incongruence length difference test. Syst Biol 51(4):625–637

    Article  PubMed  Google Scholar 

  • Bentham G (1846) Scrophularia. In: deCandolle AP, deCandolle A (eds) Prodromus systematis naturalis regni vegetabilis, vol 10. Treuttel and Würtz, Paris, pp 302–420

  • Böhle U-R, Hilger HH, Martin WF (1996) Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). Proc Natl Acad Sci 93(21):11740–11745

    Article  PubMed  Google Scholar 

  • Boissier PE (1856) Diagnoses Plantarum orientalium novarum, ser. 2,3. Geneva, Paris, Leipzig, p 158

  • Boissier PE (1879) Flora orientalis, sive Enumeratio plantarum in Oriente a Graecia et Aegypto ad Indiae fines hucusque observatarum, vol 4. H. Georg, Geneva, Basel, pp 387–420

  • Borhidi A (1996) Phytogeography and vegetation ecology of Cuba, 2nd edn. Adadémiai Kiadó, Budapest

    Google Scholar 

  • Boufford DE (1998) Eastern Asian–North American plant disjunction: opportunities for further investigation. Korean J Pl Taxon 28:49–61

    Google Scholar 

  • Boufford DE, Spongberg SA (1983) Eastern Asian–eastern North American phytogeographical relationships—a history from the time of Linnaeus to the twentieth century. Ann Mo Bot Gard 70:423–439

    Article  Google Scholar 

  • Bremer K, Friis EM, Bremer B (2004) Molecular phylogenetic dating of Asterid flowering plants shows early cretaceous diversification. Syst Biol 53(3):496–505

    Article  PubMed  Google Scholar 

  • Britton NL, Wilson P (1925) Scientific survey of Porto Rico and the Virgin Islands, vol 6, part 2. New York Academy of Science, New York, pp 186–187

  • Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL, Waddell PJ (1993) Partitioning and combining data in phylogenetic analysis. Syst Biol 42(3):384–397

    Google Scholar 

  • Buskirk RE (1985) Zoogeographic patterns and tectonic history of Jamaica and the northern Caribbean. J Biogeogr 12:445–461

    Article  Google Scholar 

  • Calviño IC, Downie SR (2007) Circumscription and phylogeny of Apiaceae subfamily Saniculoideae based on chloroplast DNA sequences. Mol Phyl Evol 44(1):175–191

    Article  CAS  Google Scholar 

  • Carlquist S (1974) Island biology. Columbia University Press, New York

    Google Scholar 

  • Censky EJ, Hodge K, Dudley J (1998) Over-water dispersal of lizards due to hurricanes. Nature 395:556

    Article  CAS  Google Scholar 

  • Cunningham CW (1997) Can three incongruence tests predict when data should be combined? Mol Biol Evol 14(7):733–740

    CAS  PubMed  Google Scholar 

  • Datson PM, Murray BG, Steiner KE (2008) Climate and the evolution of annual/perennial life-histories in Nemesia (Scrophulariaceae). Plant Syst Evol 270:39–57

    Article  Google Scholar 

  • Donovan SK, Jackson TA (1994) Caribbean geology: an introduction. University of the West Indies Publishers’ Association, Kingston

    Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  CAS  Google Scholar 

  • Drummond AJ, Nicholls GK, Rodrige AG, Solomon W (2002) Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161:1307–1320

    CAS  PubMed  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

    Article  PubMed  CAS  Google Scholar 

  • Edwin G (1959) Scrophulariaceae of Nevada. Part II: Contributions toward a flora of Nevada, vol. 47. US National Arboretum, Washington, DC

    Google Scholar 

  • Fischer E (2004) Scrophulariaceae. In: Kadereit JW (ed) The families and genera of vascular plants, vol 7. Springer, Heidelberg, pp 333–432

    Google Scholar 

  • Fritsch PW (2003) Geographic origins of Antillean Styrax. Syst Bot 28(2):421–430

    Google Scholar 

  • Gebrehewit M, Bremer B, Thulin M (2000) Phylogeny of the tribe Antirrhineae (Scrophulariaceae) based on morphological and ndhF sequence data. Plant Syst Evol 220:223–239

    Article  Google Scholar 

  • Graham A (2003a) Geohistory models and Cenozoic paleoenvironments of the Caribbean region. Syst Bot 28(2):378–386

    Google Scholar 

  • Graham SA (2003b) Biogeographic patterns of Antillean Lythraceae. Syst Bot 28(2):410–420

    Google Scholar 

  • Grau J (1981) Scrophularia. In: Rechinger KH (ed) Flora Iranica, Lfg. 147. Akademische Druck- und Verlagsanstalt, Graz, pp 213–284

    Google Scholar 

  • Greene EL (1894) Manual of the botany of the region of San Francisco Bay. Cubery, San Francisco, p 273

    Google Scholar 

  • Hall TA (1999) BioEdit (version 7.0.5.1): a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hamilton W (1825) Prodromus plantarum indiae occidentalis: hucusque cognitarum tam in oris Americae Meridionalis, quam in insulis Antillicis sponte cresentium, aut ibi diuturne hospitantium, nova genera et species hactenus ignotas complectens/digessit Gulielmus Hamilton. Treuttel und Wurtz, London, p 47

    Google Scholar 

  • Hartl D (1965) Familie Scrophulariaceae. In: Hartl D, Wagenitz G (eds) Hegi, illustrierte Flora von Mitteleuropa, vol 6, part 1. Carl Hauser Verlag, München, pp 1–36

  • Hedges SB (1996) Historical biogeography of West Indian vertebrates. Annu Rev Ecol Syst 27:163–196

    Article  Google Scholar 

  • Hedges SB (2006) Paleogeography of the Antilles and origin of West Indian terrestrial vertebrates. Ann Missouri Bot Gard 93(2):231–244

    Article  Google Scholar 

  • Hedges SB, Hass C, Maxson L (1992) Caribbean biogeography: molecular evidence for dispersal in West Indian terrestrial vertebrates. Proc Natl Acad Sci USA 89:1909–1913

    Article  CAS  PubMed  Google Scholar 

  • Heller AA (1906) S. floribunda (Greene) A. Heller. Muhlenbergia 2:246

  • Hipp AL, Hall JC, Sytsma KJ (2004) Congruence versus phylogenetic accuracy: revisiting the incongruence length difference test. Syst Biol 53(1):81–89

    Article  PubMed  Google Scholar 

  • Hong D-Y (1983) The distribution of Scrophulariaceae in the Holarctic with special reference to the floristic relationships between eastern Asia and eastern North America. Ann Mo Bot Gard 70(4):701–712

    Article  Google Scholar 

  • Iturralde-Vinent MA, MacPhee RDE (1999) Paleogeography of the Caribbean region: implications for Cenozoic biogeography. Bull Am Mus Nat Hist 238:1–95

    Google Scholar 

  • Janssens SB, Knox EB, Huysmans S, Smets EF, Merckx VS (2009) Rapid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: result of a global climate change. Mol Phyl Evol 52:806–824

    Article  CAS  Google Scholar 

  • Johnson LA, Soltis DS (1998) Assessing congruence: empirical examples from molecular data. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer Academic, Dordrecht, pp 297–348

    Google Scholar 

  • Kamada T, Yamashiro T, Maki M (2007) Intraspecific morphologica and genetic differentiation in Scrophularia grayana (Scrophulariaceae). J Plant Res 120:437–443

    Article  PubMed  Google Scholar 

  • Kearney TH, Peebles RH (1951) Arizona flora. University of California Press, Berkeley

    Google Scholar 

  • Kim Y-D, Jansen RK (1998) Chloroplast DNA restriction site variation and phylogeny of the Berberidaceae. Am J Bot 85:1766–1778

    Article  CAS  Google Scholar 

  • Knapp C (2000) Alsophis vudii (Bahamian Brown Racer). Overwater dispersal. Herpetol Rev 31:244

    Google Scholar 

  • Knox EB, Downie SR, Palmer JD (1993) Chloroplast genome rearrangements and the evolution of giant lobelias from herbaceous ancestors. Mol Biol Evol 10:414–430

    CAS  Google Scholar 

  • Kornhall P, Heidari N, Bremer B (2001) Selagineae and Manuleae, two tribes or one? Phylogenetic studies in Scrophulariaceae. Plant Syst Evol 228:199–218

    Article  Google Scholar 

  • Lall SS, Mill RR (1978) Scrophularia. In: Davis PH (ed) Flora of Turkey, vol 6. University Press Edinburgh, Edinburgh, pp 603–647

  • Lavin M (1993) Biogeography and systematics of Poitea (Leguminosae). Syst Bot Monogr 37:1–87

    Article  Google Scholar 

  • Lavin M, Wojciechowski MF, Richman A, Rotella J, Sanderson MJ, Beyra-Matos A (2001) Identifying tertiary radiations of Fabaceae in the greater antilles: alternatives to cladistic vicariance analysis. Int J Plant Sci 162(6Suppl):53–76

    Article  Google Scholar 

  • Lee YN (1967) Chromosome numbers of flowering plants in Korea. J Korean Res Inst Ewha Women’s Univ 11:455–478

    Google Scholar 

  • Lewis JF, Draper G (1990) Geology and tectonic evolution of the northern Caribbean margin. In: Dengo G, Case JE (eds) The geology of North America, vol H, the Caribbean region. Geological Society of America, Boulder, pp 77–140

  • Li HL (1952) Floristic relationships between eastern Asia and eastern North America. Trans Am Philos Soc N Ser 42:371–429

    Google Scholar 

  • Li J, Bogle AL, Klein AS, Donoghue MJ (2000) Phylogeny and biogeography of Hamamelis (Hamamelidaceae). Harv Pap Bot 5:171–178

    Google Scholar 

  • Li J, Kelley S, del Tredici P, Donoghue MJ (2001) Phylogenetic relationships of Torreya (Taxaceae) inferred from sequences of nuclear ribosomal ITS regions. Harv Pap Bot 6:275–281

    Google Scholar 

  • Li J, Zhang D, Donoghue MJ (2003) Phylogeny and biogeography of Chamaecyparis (Cupressaceae) inferred from DNA sequences of the nuclear ribosomal ITS region. Rhodora 105(922):106–117

    Google Scholar 

  • Lightfoot K, Sivinski R (1994) Status report on Scrophularia macrantha Greene ex Stiefelhagen. In: Lightfoot K, Sivinski R (eds) Inventory of the rare and endangered plants of New Mexico, 2nd edn. Miscellaneous publication no. 3. New Mexico State Forestry and Resources Conservation Division, Santa Fe

  • Linder HP, Hardy CR (2004) Evolution of the species rich Cape flora. Phil Trans R Soc Lond Ser B 359:1623–1632

    Article  CAS  Google Scholar 

  • Liogier AH (1994) La flora de la Espanola, vol 6. Universidad Central del Este, San Pedro de Macoris, República Dominicana, Santo Domingo, pp 465–472

  • Ma XH, Qin RL, Xing WB (1984) Chromosome observations of some medical plants in Xinjiang. Acta Phytotaxon Sin 22:243–249

    Google Scholar 

  • Magallon S, Crane PR, Herendeen PS (1999) Phylogenetic pattern, diversity, and diversification of eudicots. Ann Mo Bot Gard 86(2):297–372

    Article  Google Scholar 

  • Marinovich L Jr, Gladenov AY (1999) Evidence for an early opening of the Bering Strait. Nature 397:149–151

    Article  CAS  Google Scholar 

  • Mason-Gamer RJ, Kellogg EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst Biol 45(4):524–545

    Article  Google Scholar 

  • McDowell T, Volovsek M, Manos P (2003) Biogeography of Exostema (Rubiaceae) in the Caribbean region in light of molecular phylogenetic analyses. Syst Bot 28(2):431–441

    Google Scholar 

  • Mehra PN, Vasudevan KN (1972) Scrophularia dentata 4257. In: Love A (ed) IOPB chromosome number reports XXXVI. Taxon 21:343

  • Meimberg H (2002) Molekular-systematische Untersuchungen an den Familien Nepenthaceae und Ancistrocladaceae sowie verwandter Taxa aus der Unterklasse Caryophyllidae s. l. PhD Dissertation, Ludwig-Maximilians-University, Munich

  • Miller MA, Holder MT, Vos R, Midford PE, Liebowitz T, Chan L, Hoover P, Warnow T (2009) The CIPRES (Cyberinfrastructure for Phylogenetic Research) portals v. 1.14. http://www.phylo.org/sub_sections/portal. Accessed 04 August 2009

  • Müller KF (2005) SeqState—primer design and sequence statistics for phylogenetic DNA data sets. Appl Bioinform 4:65–69

    Article  Google Scholar 

  • Munz PA (1958) California miscellany IV. Aliso 4(1):99

    Google Scholar 

  • Munz PA, Keck DD (1959) A California flora. University of California Press, Berkeley, pp 642–643

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Foseca G, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Negrón-Ortiz V, Watson LE (2003) Hypotheses for the colonization of the Caribbean basin by two genera of the Rubiaceae: Erithalis and Ernodea. Syst Bot 28(2):442–451

    Google Scholar 

  • Nie Z-L, Wen J, Sun H, Bartholomew B (2005) Monophyly of Kellogia Torrey ex Benth. (Rubiaceae) and evolution of its intercontinental disjunction between western North America and eastern Asia. Am J Bot 92:642–652

    Article  Google Scholar 

  • Nie Z-L, Sun H, Beardsley PM, Olmstead RG, Wen J (2006) Evolution of biogeographic disjunction between eastern Asia and eastern North America in Phryma (Phrymaceae). Am J Bot 93(9):1343–1356

    Article  CAS  Google Scholar 

  • Nishikawa T (1985) Chromosome counts of flowering plants of Hokkaido (9). J Hokkaido Univ Educ Sect 2B 36:25–40

    Google Scholar 

  • Olmstead RG, Reeves PA (1995) Evidence for the polyphyly of the Scrophulariaceae based on chloroplast rbcL and ndhF sequences. Ann Mo Bot Gard 82:176–193

    Article  Google Scholar 

  • Olmstead RG, dePamphilis C, Wolfe AD, Young ND, Elisens WJ, Reeves PA (2001) Disintegration of Scrophulariaceae. Am J Bot 88:348–361

    Article  CAS  PubMed  Google Scholar 

  • Ortega Olivencia A (2009) Scrophularia. In: Benedí C, Rico E, Güemes J, Herrero A (eds) Flora Iberica, vol 13, Plantaginaceae–Scrophulariaceae. Real Jardín Botánico, CSIC, Madrid, pp 97–134

  • Oxelman B, Backlund M, Bremer B (1999) Relationships of the Buddlejaceae s.l. investigated using parsimony jackknife and branch support analysis of chloroplast ndhF and rbcL sequence data. Syst Bot 24:164–182

    Article  Google Scholar 

  • Oxelman B, Kornhall P, Olmstead RG, Bremer B (2005) Further disintegration of Scrophulariaceae. Taxon 54:411–425

    Article  Google Scholar 

  • Panero JL, Francisco-Ortega J, Jansen RK, Santos-Guerra A (1999) Molecular evidence for multiple origins of woodiness and a New World biogeographic connection of the Macaronesian island endemic Pericallis (Asteraceae: Senecioneae). Proc Natl Acad Sci 96(24):13886–13891

    Article  CAS  PubMed  Google Scholar 

  • Pennell FW (1935) The Scrophulariaceae of eastern temperate North America. Academy of Natural Sciences Philadelphia, monograph vol 1. Wickersham, Lancaster

    Google Scholar 

  • Pennell FW (1947) Some hitherto undescribed Scrophulariaceae of the Pacific States. Proc Acad Nat Sci Phil 99:155–199

    Google Scholar 

  • Pindell J, Barrett SF (1990) Geological evolution of the Caribbean: a plate tectonic perspective. In: Dengo G, Case JE (eds) The geology of North America, vol H, the Caribbean region. Geological Society of America, Boulder, pp 405–432

  • Powell R (1999) Herpetology of Navassa Island, West Indies. Caribb J Sci 35:1–13

    Google Scholar 

  • Rahmanzadeh R, Müller K, Fischer E, Bartels D, Borsch T (2004) The Linderniaceae and Gratiolaceae are further lineages distinct from the Scrophulariaceae (Lamiales). Plant Biol 7:67–78

    Article  CAS  Google Scholar 

  • Renner S (2004) Plant dispersal across the tropical Atlantic by wind and sea currents. Int J Plant Sci 165(Suppl 4):23–33

    Article  Google Scholar 

  • Robertson C (1891) Flowers and insects, Asclepiadaceae to Scrophulariaceae. Trans Acad Sci St Louis 5:569–598

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinform 19:1572–1574

    Article  CAS  Google Scholar 

  • Rosen DE (1975) A vicariance model of Caribbean biogeography. Syst Zool 24:431–464

    Article  Google Scholar 

  • Scheen A-C, Brochmann C, Brysting AK, Elven R, Morris A, Soltis DE, Soltis PS, Albert VA (2004) Northern Hemisphere biogeography of Cerastium (Caryophyllaceae): insights from phylogenetic analysis of noncoding plastid nucleotide sequences. Am J Bot 91(6):943–952

    Article  CAS  Google Scholar 

  • Scherer H (1939) Chromosomenzahlen aus der schleswig-holsteinischen Flora, I. Planta 29:636–642

    Article  Google Scholar 

  • Shaw RJ (1962) The biosystematics of Scrophularia in western North America. Aliso 5(2):147–178

    Google Scholar 

  • Shaw J, Small RL (2004) Addressing the “hardest puzzle in American pomology”: phylogeny of Prunus sect. Prunocerasus (Rosaceae) based on seven noncoding chloroplast DNA regions. Am J Bot 91(6):985–996

    Article  CAS  Google Scholar 

  • Shu XS (1998) Scrophularia. In: Wu Z-Y (ed) Flora of China, vol 18. Scrophulariaceae through Gesneriaceae. Missouri Botanical Garden’s Scientific Publications, St Louis, pp 12–21

    Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based analyses. Syst Biol 49:369–381

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Tago-Nakazawa M, Xiang Q-Y, Kawano S, Murata J, Wakabayashi M, Hibsch-Jetter C (2001) Phylogenetic relationships and evolution in Chrysosplenium (Saxifragaceae) based on matK sequence data. Am J Bot 88(5):883–893

    Article  PubMed  Google Scholar 

  • Stamatakis A, Ott M, Ludwig T (2005) RAxML-OMP: an efficient program for phylogenetic inference on SMPs. In: Malyshkin V (ed) Proceedings of the 8th international conference on parallel computing technologies (PaCT2005). Lect Notes Comput Sci 3506:288–302

  • Stamatakis A, Hoover P, Rougemont J (2008) A fast bootstrapping algorithm for the RAxML web-servers. Syst Biol 57(5):758–771

    Article  PubMed  Google Scholar 

  • Stiefelhagen H (1910) Systematische und pflanzengeographische Studien zur Kenntnis der Gattung Scrophularia. Bot Jahrb Syst 44:406–496

    Google Scholar 

  • Sun H (2002) Evolution of arctic-tertiary flora in Himalayan-Hengduan Mountains. Acta Bot Yunnan 24:671–688

    Google Scholar 

  • Swofford DL (2003) PAUP: phylogenetic analysis using parsimony. Version 4.0b10 for 32-bit Microsoft Windows. Sinauer, Sunderland

    Google Scholar 

  • Tavaré S (1986) Some probabilistic and statistical problems on the analysis of DNA sequences. Lect Math Life Sci 17:57–86

    Google Scholar 

  • Templeton AR (1983) Phylogenetic inference from restriction site endonuclease cleavage site maps with particular reference to the humans and apes. Evolution 37:221–233

    Article  CAS  Google Scholar 

  • Tidestrom I, Kittell T (1941) A flora of Arizona and New Mexico. Catholic University of America Press, Washington, DC

    Google Scholar 

  • Tiffney BH (1985) The Eocene North Atlantic Land Bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J Arnold Arbor 66:243–273

    Google Scholar 

  • Tiffney BH, Manchester SR (2001) The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the northern hemisphere tertiary. Int J Plant Sci 162:S3–S17

    Article  Google Scholar 

  • Trelease W (1881) The fertilization of Scrophularia. Bull Torrey Bot Club 8:133–140

    Article  Google Scholar 

  • Urban I (1898–1900) Symbolae Antillanae seu fundamenta florae indiae occidentalis, vol 1. Gebr. Bornträger, Berlin, p 403

  • Urban I (1903–1911) Symbolae Antillanae seu fundamenta florae indiae occidentalis, vol 4. Gebr. Bornträger, Leipzig, p 557

  • USDA NRCS National Plant Data Center (2010) The PLANTS database. http://plants.usda.gov. Accessed 15 April 2010

  • USDA Soil Conservation Service (1982) National list of scientific plant names, vol 1. United States Department of Agriculture, Washington, DC, p 261

    Google Scholar 

  • Vaarama A, Hiirsalmi H (1967) Chromosome studies on some Old World species of the genus Scrophularia. Hereditas 58(23):333–358

    Google Scholar 

  • Wen J (1999) Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annu Rev Ecol Syst 30:421–455

    Article  Google Scholar 

  • Wen J, Shi S (1999) A phylogenetic and biogeographic study of Hamamelis (Hamamelidaceae), an eastern Asian and eastern American disjunct genus. Biochem Syst Ecol 27:55–66

    Article  CAS  Google Scholar 

  • Wen J, Shi S, Jansen RK, Zimmer EA (1998) Phylogeny and biogeography of Aralia sect. Aralia (Araliaceae). Am J Bot 85(6):866–875

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninski JJ, White TJ (eds) PCR protocols. A guide to methods and applications, UK edition. Academic Press, San Diego, pp 315–322

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond Ser B 268:2211–2220. doi:10.1098/rspb.2001.1782

    Article  Google Scholar 

  • Willis JC (1973) A dictionary of the flowering plants and ferns, 8th edn. University Press, Cambridge

    Google Scholar 

  • Wu CJ (1988) Hengduan mountains flora and her significance. J Jap Bot 63:297–311

    Google Scholar 

  • Wydler H (1828) Essai monographique sur le genre Scrofularia. Mém Soc Phys Genève 4:121–170

    Google Scholar 

  • Xiang Q-Y, Crawford DJ, Wolfe AD, Tang Y-C, dePamphillis CW (1998) Origin and biogeography of Aesculus L. (Hippocastanaceae): a molecular phylogenetic perspective. Evolution 52:988–997

    Article  Google Scholar 

  • Xiang Q-Y, Soltis DE, Soltis PS, Manchester SR, Crawford DJ (2000) Timing the Eastern Asian–Eastern North American floristic disjunction: molecular clock corroborates paleontological estimates. Mol Phyl Evol 158(3):462–472

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Prof. Dr. Dave Boufford for his valuable introduction to the North American species of Scrophularia, his kind support of this study, and his helpful comments on the manuscript. Furthermore, we thank the herbaria and curators of A, GH, M, MSB, UTEP, W, and WU for permitting the examination of their specimens and for help in obtaining leaf material. The Botanical Garden Tübingen (Germany) is acknowledged for providing seeds, as well as Till Hägele and the Korean National Arboretum Seoul (Rep. of Korea) for plant material. We thank Florian Turini for help with the data analyses, Tanja Ernst for laboratory assistance, and the whole lab group of Prof. Heubl for helpful discussions and comments on the manuscript. This study was supported by the Universität Bayern e.V. by means of the Bayerisches Eliteförderungsgesetz (BayEFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes Scheunert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheunert, A., Heubl, G. Phylogenetic relationships among New World Scrophularia L. (Scrophulariaceae): new insights inferred from DNA sequence data. Plant Syst Evol 291, 69–89 (2011). https://doi.org/10.1007/s00606-010-0369-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0369-z

Keywords

Navigation