Skip to main content
Log in

Cytogenetics, geographical distribution, pollen stainability and fecundity of five diploid taxa of Santolina rosmarinifolia L. aggregate (Asteraceae: Anthemideae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The chromosome analysis of Santolina rosmarinifolia subsp. rosmarinifolia, S. oblongifolia, S. semidentata subsp. semidentata, S. semidentata subsp. melidensis, S. canescens and the hybrid complex (S. rosmarinifolia subsp. rosmarinifolia, S. oblongifolia and their putative hybrids) shows that all the taxa are diploids (2n = 2x = 18; 18 + 1 or more B chromosomes, with 2n = 19, 20 only in the hybrid complex). The results show a conserved general structure of the karyotype (14m + 2sm + 2st), but in S. semidentata subsp. melidensis it is variable, with 14m + 2sm + 2st in ten individuals, 14m + (1m − 1sm) + (1 m − 1st) in nine individuals and 12m + (1m − 1sm) + (1m − 1st) + 2st + 1B in five individuals. Tetraploid individuals occurred in the diploid populations of S. rosmarinifolia subsp. rosmarinifolia and S. canescens, and their autopolyploid origin is discussed. Multivalent configurations at diakinesis, simple and double chromosome bridges and delayed disjunction of homologous and non-homologous chromosomes at anaphase I have negative effects on pollen stainability. The mean fructification percentage is moderate. The results suggest that the complex is a mosaic of introgressive hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figs. 2-10
Figs. 11-23

Similar content being viewed by others

References

  • Abbott RJ (1992) Plant invasions, interspecific hybridization and the evolution of new plant taxa. Trends Ecol Evol 7:401–405

    Article  Google Scholar 

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622

    Article  Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford series in ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Baack EJ, Rieseberg LH (2007) A genomic view of introgression and hybrid speciation. Curr Opin Genet Dev 17:513–518

    Article  PubMed  CAS  Google Scholar 

  • Barber JC, Finch CC, Francisco-Ortega J, Santos-Guerra A, Jansen RK (2007) Hybridization in Macaronesian Sideritis (Lamiaceae): evidence from incongruence of multiple independent nuclear and chloroplast sequence datasets. Taxon 56:74–88

    Google Scholar 

  • Barton NH (2001) The role of hybridisation in evolution. Mol Ecol 10:551–568

    Article  PubMed  CAS  Google Scholar 

  • Barton NH, Hewitt GM (1981) The genetic-basis of hybrid inviability in the grasshopper Podisma pedestris. Heredity 47:367–383

    Article  Google Scholar 

  • Barton NH, Hewitt GM (1989) Adaptation, speciation and hybrid zones. Nature 341:497–503

    Article  PubMed  CAS  Google Scholar 

  • Barton NH, Hewitt GM (2001) The role of hybridisation in evolution. Mol Ecol 10:551–568

    Article  PubMed  CAS  Google Scholar 

  • Bretagnolle F (2001) Pollen reduction and spontaneous polyploidization in diploid populations of Anthoxanthum alpinum. Biol J Linn Soc 72:241–247

    Article  Google Scholar 

  • Burton TL, Husband BC (2000) Fitness differences among diploids and tetraploids and their triploid progeny in Chamerion angustifolium (Onagraceae): mechanisms of inviability and implications for polyploidy evolution. Evolution 54:1182–1191

    PubMed  CAS  Google Scholar 

  • Cozzolino S, Nardellaa AM, Impagliazzoa S, Widmerb A, Lexerc C (2006) Hybridization and conservation of Mediterranean orchids: should we protect the orchid hybrids or the orchid hybrid zones? Biol Conserv 129:14–23

    Article  Google Scholar 

  • Darlington CD, Moffett AA (1930) Primary and secondary chromosome balance in Pyrus. J Genet 22:129–151

    Article  Google Scholar 

  • Dytham C (2003) Choosing and using statistics. A biologist’s guide, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Ellstrand NC, Whitkus R, Rieseberg LH (1996) Distribution of spontaneous plant hybrids. Proc Natl Acad Sci USA 93:5090–5093

    Article  PubMed  CAS  Google Scholar 

  • Felber F (1991) Establishment of the tetraploid cytotype in a diploid population: effect of relative fitness of the cytotypes. J Evol Biol 4:195–207

    Article  Google Scholar 

  • Ferreira VA (1985) Variabilidad y citogenética de los híbridos entre tres especies anuales de Helianthus. Mendeliana 7:13–30

    Google Scholar 

  • Grafen A, Hails R (2003) Modern statistics for life science. Oxford University Press, Oxford

    Google Scholar 

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711

    Article  PubMed  CAS  Google Scholar 

  • Guinea E (1970) Santolina europaeae. Anales Inst Bot A J Cavanilles 27:29–44

    Google Scholar 

  • Gupta PP, Roy SK (1973) Primary and secondary chromosome association in Euryale ferox Salisb. Cytologia 38:645–649

    Google Scholar 

  • Gustafsson M (1972) Distribution and effects of paracentric inversions in populations of Atriplex longipes. Hereditas 71:173–194

    Article  Google Scholar 

  • Harlan JR, deWet JM (1975) On Ö. Winge and prayer: the origins of polyploidy. Bot Rev 41:361–390

    Article  Google Scholar 

  • Harrison RG (1990) Hybrid zones: windows on evolutionary process. Oxford Surv Evol Biol 7:69–128

    Google Scholar 

  • Husband BC (2004) The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biol J Linn Soc 82:537–546

    Article  Google Scholar 

  • Jackson RC (1965) A cytogenetic study of a three-paired race of Haplopappus gracilis. Am J Bot 52:946–953

    Article  Google Scholar 

  • Jackson RC, Casey J (1982) Cytogenetic analyses of autopolyploids: models and methods for triploids to octoploids. Am J Bot 69:487–501

    Article  Google Scholar 

  • Jacob KM (1957) Secondary association in the castor oil plant. Cytologia 22:380–392

    Google Scholar 

  • Jones RN (1991) B-chromosomes drive. Am Nat 137:430–442

    Article  Google Scholar 

  • Jones RN, Houben A (2003) B chromosomes in plants: escapees from the A chromosome genome? Trends Plant Sci 8:417–423

    Article  PubMed  CAS  Google Scholar 

  • Jordan A, Fourreau J (1869) Icones ad Floram Europae novo fundamento instaurandam spectantes. II. F. Savy, Paris

    Google Scholar 

  • Jos JS, Vasudevan KN, Magno ML (1968) Structural hybridity in Typhonium cuspidatum Bl. Genét Ibér 20:1–11

    Google Scholar 

  • Kempanna C, Riley R (1964) Secondary association between genetically equivalent bivalents. Heredity 19:289–296

    Article  Google Scholar 

  • Kim SC, Rieseberg LH (1999) Genetic architecture of species differences in annual sunflowers: implications for adaptive trait introgression. Genetics 153:965–977

    PubMed  CAS  Google Scholar 

  • Lacadena JR, Puertas MJ (1969) Secondary association of bivalents in allohexaploid, Aegilops triaristata Willd. 6x. Genét Ibér 21:191–209

    Google Scholar 

  • Larson JL (1968) The species concept of Linnaeus. Isis 59:291–299

    Article  Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Article  Google Scholar 

  • Löve Á, Löve D (1975) Plant chromosomes. J. Cramer, Vaduz

    Google Scholar 

  • Palestis BG, Burt A, Jones RN, Trivers R (2004) The distribution of B chromosomes across species. Cytogenet Gen Res 106:151–158

    Article  CAS  Google Scholar 

  • Raina SN, Khoshoo TK (1971) Cytogenetics of tropical bulbous ornamentals IV. Nature of triploidy in Crinum augustum. Cytologia 36:595–603

    Google Scholar 

  • Rieseberg LH (1995) The role of hybridisation in evolution: old wine in new skins. Am J Bot 82:944–953

    Article  Google Scholar 

  • Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359–389

    Article  Google Scholar 

  • Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358

    Article  PubMed  Google Scholar 

  • Rieseberg LH, Ellstrand NC (1993) What can morphological and molecular markers tell us about plant hybridisation? Crit Rev Plant Sci 12:213–241

    Article  CAS  Google Scholar 

  • Rieseberg LH, Baird SJE, Gardner KA (2000) Hybridisation, introgression, and linkage evolution. Plant Mol Biol 42:205–224

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg LH, Kim S-C, Randell RA, Whitney KD, Gross BL, Lexer C, Clay K (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165

    Article  PubMed  Google Scholar 

  • Riley R (1960) The secondary pairing of bivalents with genetically similar chromosomes. Nature 185:751–752

    Article  Google Scholar 

  • Rivero-Guerra AO (2008a) Cytogenetics, geographical distribution and pollen fertility of diploid and tetraploid cytotypes of Santolina pectinata Lag. (Asteraceae: Anthemideae). Bot J Linn Soc 156:657–667

    Article  Google Scholar 

  • Rivero-Guerra AO (2008b) Phenotypic differentiation of peripheral populations of Santolina rosmarinifolia L (Asteraceae: Anthemideae). Bot J Linn Soc 158:650–668

    Article  Google Scholar 

  • Rivero-Guerra AO (2008c) Cytogenetics, biogeography and biology of Santolina ageratifolia Barnades ex Asso (Asteraceae: Anthemideae). Bot J Linn Soc 157:797–807

    Article  Google Scholar 

  • Rivero-Guerra AO (2009a) Cytogenetics, geographical distribution, pollen stainability and fecundity of Santolina impressa Hoffmanns. & Link (Asteraceae: Anthemideae). Folia Geobot (in press)

  • Rivero-Guerra AO (2009b) Morphological variation within and between taxa of Santolina rosmarinifolia L. aggregate (Asteraceae: Anthemideae). Syst Bot (in press)

  • Rodríguez DJ (1996) A model for the establishment of polyploidy in plants. Am Nat 147:33–46

    Article  Google Scholar 

  • Rodriguez-Oubiña J, Ortiz S (1993) A new subspecies of Santolina rosmarinifolia L (Asteraceae) from serpentine soils in Central Galicia Iberian Peninsula). Bot J Linn Soc 111:457–462

    Google Scholar 

  • Romero Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35:526–530

    Article  Google Scholar 

  • Schweizer D, Ehrendorfer F (1983) Evolution of C-band patterns in Asteraceae-Anthemideae. Biol Zentr 102:637–655

    Google Scholar 

  • Snow T (1963) Alcoholic hydrochloric acid-carmine as a stain for chromosomes in squash preparation. Stain Technol 38:9–13

    PubMed  CAS  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London

    Google Scholar 

  • Stein J, Quarin CL, Martínez EJ, Pessino SC, Ortiz JPA (2004) Tetraploid races of Paspalum notatum show polysomic inheritance and preferential chromosome pairing around the apospory-controlling locus. Theor Appl Genet 109:186–191

    Article  PubMed  CAS  Google Scholar 

  • Stuessy TF, Weiss-Schneeweiss H, Keil DJ (2004) Diploid and polyploid cytotype distribution in Melampodium cinereum and M. leucanthum (Asteraceae, Heliantheae). Am J Bot 91:889–898

    Article  Google Scholar 

  • Sybenga J (1975) Meiotic configuration. Monographs on theoretical and applied genetics 1. Springer Verlag, Berlin

    Google Scholar 

  • Thomas PT, Revell SH (1946) Secondary association and heterochromatic attraction. Ann Bot 10:159–164

    Google Scholar 

  • Tjio JH, Levan A (1950) The use of oxyquinoline in chromosome analysis. Anales Est Exp Aula Dei 2:21–64

    Google Scholar 

  • Valdés-Bermejo E, López G (1977) Aportaciones a la Flora Española. Anales Inst Bot Cavanilles 34:170–173

    Google Scholar 

  • Valdés-Bermejo E, López G, Antúnez C (1981) Estudios cariológicos en especies españolas del género Santolina L. (Compositae). Anales Jard Bot Madrid 38:127–144

    Google Scholar 

  • Wang JL, Tian L, Lee HS, Chen ML (2006) Non additive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids. Genetics 173:965–974

    Article  PubMed  CAS  Google Scholar 

  • Willkomm M (1859) Pugillus plantarum novarum peninsulae pyrenaicae. Linnaea 30:83–142

    Google Scholar 

  • Willkomm M, Lange J (1870) Prodromus Florae Hispanicae. II. Typis e sumtibus librariae. E. Schweizerbart, Stuttgartiae

    Google Scholar 

Download references

Acknowledgments

I thank the Instituto National de Meteorología for weather data on the study areas. I am grateful to Prof. P. Brandham, Prof. S. Talavera and Dr. A. Aparicio Martínez for comments and for their time, to Roger Churchill and P. Brandham for help with the English version of the manuscript, to Dr. F. J. Salgueiro for his collaboration on scanning the images, and to my friends J. Cabarga, J. M. Higueras Carranza, J. García López and A. Ojeda Ramírez for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aixa O. Rivero-Guerra.

Appendix

Appendix

Table 6 Summary of karyotype of S. rosmarinifolia subsp. rosmarinifolia (ROS), S. oblongifolia (OBL), S. semidentata subsp. semidentata (SEM), S. semidentata subsp. melidensis (MEL), S. canescens (CAN) and in the hybrid complex (MIX) of S. rosmarinifolia subsp. rosmarinifolia, S. oblongifolia and their putative hybrids (HYB)
Table 7 Summary of meiotic configuration frequency of S. rosmarinifolia subsp. rosmarinifolia (ROS), S. oblongifolia (OBL), S. semidentata subsp. semidentata (SEM), S. semidentata subsp. melidensis (MEL), S. canescens (CAN) and in the hybrid complex (MIX) of S. rosmarinifolia subsp. rosmarinifolia, S. oblongifolia and their putative hybrids (HYB)
Table 8 Summary of chiasma frequency of S. rosmarinifolia subsp. rosmarinifolia (ROS), S. oblongifolia (OBL), S. semidentata subsp. semidentata (SEM), S. semidentata subsp. melidensis (MEL), S. canescens (CAN) and in the hybrid complex (MIX) of S. rosmarinifolia subsp. rosmarinifolia, S. oblongifolia and their putative hybrids (HYB)
Table 9 Proportion (%) of meiocytes displaying abnormal anaphase in S. rosmarinifolia subsp. rosmarinifolia (ROS), S. oblongifolia (OBL), S. semidentata subsp. semidentata (SEM), S. semidentata subsp. melidensis (MEL), S. canescens (CAN) and in the hybrid complex (MIX) of S. rosmarinifolia subsp. rosmarinifolia, S. oblongifolia and their putative hybrids (HYB)
Table 10 Variability of the PCA factors of the meiotic characteristic by means of nested MANOVA aimed at detecting variation between and within taxa and within the hybrid complex. Variance components are shown in parenthesis
Table 11 Summary of pollen stainability of S. rosmarinifolia subsp. rosmarinifolia (ROS), S. oblongifolia (OBL), S. semidentata subsp. semidentata (SEM), S. semidentata subsp. melidensis (MEL), S. canescens (CAN) and in the hybrid complex (MIX) of S. rosmarinifolia subsp. rosmarinifolia, S. oblongifolia and their putative hybrids (HYB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivero-Guerra, A.O. Cytogenetics, geographical distribution, pollen stainability and fecundity of five diploid taxa of Santolina rosmarinifolia L. aggregate (Asteraceae: Anthemideae). Plant Syst Evol 281, 17–34 (2009). https://doi.org/10.1007/s00606-009-0180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-009-0180-x

Keywords

Navigation