Skip to main content
Log in

Wave-breaking phenomena for a new weakly dissipative quasilinear shallow-water waves equation

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we mainly study a new weakly dissipative quasilinear shallow-water waves equation, which can be formally derived from a model with the effect of underlying shear flow from the incompressible rotational two-dimensional shallow water in the moderately nonlinear regime by Wang, Kang and Liu (Appl Math Lett 124:107607, 2022). Considering the dissipative effect, the local well-posedness of the solution to this equation is first obtained by using Kato’s semigroup theory. We then establish the precise blow-up criterion by using the transport equation theory and Moser-type estimates. Moreover, some sufficient conditions which guarantee the occurrence of wave-breaking of solutions are studied according to the different real-valued intervals in which the dispersive parameter \(\theta \) being located. It is noteworthy that we need to overcome the difficulty induced by complicated nonlocal nonlinear structure and different dispersive parameter ranges to get corresponding convolution estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

No data was used for the research described in the article.

References

  1. Beals, R., Sattinger, D., Szmigielski, J.: Multi-peakons and a theorem of Stieltjes. Inverse Probl. 15, 1–4 (1999)

    Article  MathSciNet  Google Scholar 

  2. Brandolese, L.: Local-in-space criteria for blowup in shallow water and dispersive rod equations. Commun. Math. Phys. 330, 401–414 (2014)

    Article  MathSciNet  Google Scholar 

  3. Camassa, R., Holm, D., Hyman, J.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  Google Scholar 

  4. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  Google Scholar 

  5. Cao, C.S., Holm, D., Titi, E.S.: Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models. J. Dyn. Differ. Equ. 16, 167–178 (2004)

    Article  MathSciNet  Google Scholar 

  6. Chen, R., Guo, F., Liu, Y., Qu, C.: Analysis on the blow-up of solutions to a class of integrable peakon equations. J. Funct. Anal. 270, 2343–2374 (2016)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y., Huang, L., Liu, Y.: On the modelling of shallow-water waves with the Coriolis effect. J. Nonlinear Sci. 30, 93–135 (2019)

    Article  MathSciNet  Google Scholar 

  8. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    Article  MathSciNet  Google Scholar 

  9. Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. A. Math. Phys. Eng. Sci. 457, 953–970 (2001)

    Article  MathSciNet  Google Scholar 

  10. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    Article  MathSciNet  Google Scholar 

  11. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Super. Pisa. CI. Sci. 26, 303–328 (1998)

    MathSciNet  Google Scholar 

  12. Constantin, A., Escher, J.: On the Cauchy problem for a family of quasilinear hyperbolic equations. Commun. Partial Differ. Equ. 23, 1449–1458 (1998)

    Article  MathSciNet  Google Scholar 

  13. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  14. Constantin, A., Escher, J.: Well-posedness, global existence, and blow-up phenomena for a periodic quasi-linear hyperbolic equation. Commun. Pure Appl. Math. 51, 475–504 (1998)

    Article  Google Scholar 

  15. Constantin, A., Escher, J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)

    Article  MathSciNet  Google Scholar 

  16. Constantin, A., Ivanov, R.I.: Equatorial wave–current interactions. Commun. Math. Phys. 370(1), 1–48 (2019)

    Article  MathSciNet  Google Scholar 

  17. Constantin, A., Kolev, B.: Integrability of invariant metrics on the diffeomorphism group of the circle. J. Nonlinear Sci. 16(2), 109–122 (2006)

    Article  MathSciNet  Google Scholar 

  18. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2007)

    Article  MathSciNet  Google Scholar 

  19. Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  Google Scholar 

  20. Dai, H.H.: Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin rod. Acta. Mech. 127, 193–207 (1998)

    Article  MathSciNet  Google Scholar 

  21. Dai, H.H., Huo, Y.: Solitary shock waves and other travelling waves in a general compressible hyperelastic rod. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 456, 331–363 (2000)

    Article  MathSciNet  Google Scholar 

  22. Danchin, R.: A few remarks on the Camassa–Holm equation. Differ. Integral Equ. 14, 953–988 (2001)

    MathSciNet  Google Scholar 

  23. Dong, X.F.: On wave-breaking phenomena for a new generalized two-component shallow water wave system. Monatsh. Math. 195, 35–53 (2021)

    Article  MathSciNet  Google Scholar 

  24. Freire, I.L., Filho, N.S., Souza, L.C., Toffoli, C.E.: Invariants and wave breaking analysis of a Camassa–Holm type equation with quadratic and cubic nonlinearities. J. Differ. Equ. 269, 56–77 (2020)

    Article  Google Scholar 

  25. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4, 47–66 (1981)

    Article  MathSciNet  Google Scholar 

  26. Ghidaglia, J.M.: Weakly damped forced Korteweg–de Vries equations behave as a finite dimensional dynamical system in the long time. J. Differ. Equ. 74, 369–390 (1988)

    Article  MathSciNet  Google Scholar 

  27. Gui, G., Lin, Y.: On the global existence and wave-breaking criteria for the two-component Camassa–Holm system. J. Funct. Anal. 258, 4251–4278 (2010)

    Article  MathSciNet  Google Scholar 

  28. Guo, Z.: Some properties of solutions to the weakly dissipative Degasperis–Procesi equation. J. Differ. Equ. 246, 4332–4344 (2009)

    Article  MathSciNet  Google Scholar 

  29. Johnson, R.S.: The Camassa–Holm equation for water waves moving over a shear flow. Fluid Dyn. Res. 33, 97–111 (2003)

    Article  MathSciNet  Google Scholar 

  30. Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Lecture Notes in Mathematics, vol. 448, pp. 25–70 (1975)

  31. Lai, S., Wu, Y.: Global solutions and blow-up phenomena to a shallow water equation. J. Differ. Equ. 249, 693–706 (2010)

    Article  MathSciNet  Google Scholar 

  32. Li, M., Liu, X., Liu, Y.: A highly nonlinear shallow-water model arising from the full water waves with the Criolis effect. J. Math. Fluid Mech. 25, 1–24 (2023)

    Article  Google Scholar 

  33. Li, Y., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)

    Article  MathSciNet  Google Scholar 

  34. Quirchmayr, R.: A new highly nonlinear shallow water wave equation. J. Evol. Equ. 16, 539–567 (2016)

    Article  MathSciNet  Google Scholar 

  35. Wang, H., Kang, J., Liu, X.C.: On the modeling of shallow-water waves moving over a shear flow. Appl. Math. Lett. 124, 107607 (2022)

    Article  MathSciNet  Google Scholar 

  36. Wei, L., Wang, Y., Zhang, H.: Breaking waves and persistence property for a two-component Camassa–Holm system. J. Math. Anal. Appl. 445, 1084–1096 (2017)

    Article  MathSciNet  Google Scholar 

  37. Wu, S., Yin, Z.: Global existence and blow-up phenomena for the weakly dissipative Camassa–Holm equation. J. Differ. Equ. 246, 4309–4321 (2009)

    Article  MathSciNet  Google Scholar 

  38. Wu, X.L.: On some wave breaking for the nonlinear integrable shallow water wave equations. Nonlinear Anal. TMA 127, 352–361 (2015)

    Article  MathSciNet  Google Scholar 

  39. Zhou, Y.: Blow-up of solutions to a nonlinear dispersive rod equation. Calc. Var. Partial Differ. Equ. 25, 63–77 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by Fundamental Research Program of Shanxi Province (Grant Nos. 202203021212286 and 202203021222126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Su, X. & Wang, K. Wave-breaking phenomena for a new weakly dissipative quasilinear shallow-water waves equation. Monatsh Math (2024). https://doi.org/10.1007/s00605-024-01958-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00605-024-01958-y

Keywords

Mathematics Subject Classification

Navigation