Skip to main content
Log in

On the well-posedness of dispersive–dissipative one dimensional equations with non decaying initial data

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we study the well-posedness of the Cauchy problem for a dissipative version of dispersive one dimensional equations of Korteweg de Vries type without any assumption on the decay of its initial data. We consider purely dispersion operators between BO and KdV combined with purely dissipation operators. We show in particular the local well-posedness of our equations in Zhidkov spaces \(Z^s\) with \(s>1/2\). Besides, we prove the convergence of the perturbed solution to that of the purely dispersive KdV type equation as the dissipation factor tends to 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelouhab, L., Bona, J.L., Felland, M., Saut, J.C.: Nonlocal models for nonlinear, dispersive waves. Phys. D 40(3), 360–392 (1989)

    Article  MathSciNet  Google Scholar 

  2. Bona, J.L., Smith, R.: The initial-value problem for the Korteweg–de Vries equation. Philos. Trans. R. Soc. Lond. Ser. A 278(1287), 555–601 (1975)

    Article  MathSciNet  Google Scholar 

  3. Bona, J.L., Schonbek, M.E.: Traveling-wave solutions to the Korteweg–de Vries–Burgers equation. Proc. R. Soc. Edinb. 101 A, 207–226 (1985)

    Article  Google Scholar 

  4. Bona, J.L., Rajopadhye, S., Schonbek, M.: Models for propagation of bores I: two-dimensional theory. Differ. Integral Equ. 7(3–4), 699–734 (1994)

    MathSciNet  Google Scholar 

  5. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, II. Geom. Funct. Anal. 3, 209–262 (1993)

    Article  MathSciNet  Google Scholar 

  6. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global well-posedness for KdV and modified KdV on \(\mathbb{R} \) and \(\mathbb{T} \). J. Am. Math. Soc. 16(3), 705–749 (2003)

    Article  MathSciNet  Google Scholar 

  7. Gallo, C.: Korteweg–de Vries and Benjamin–Ono equations on Zhidkov spaces. Adv. Differ. Equ. 10(3), 277–308 (2005)

    MathSciNet  Google Scholar 

  8. Ginibre, J.: Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain). Astérisque 237, 163–187 (1996)

    Google Scholar 

  9. Goodman, J.: Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Ration. Mech. Anal. 95, 325–344 (1986)

    Article  MathSciNet  Google Scholar 

  10. Guo, Z., Peng, L., Wang, B., Wang, Y.: Uniform well-posedness and inviscid limit for the Benjamin–Ono–Burgers equation. Adv. Math. 228(2), 647–677 (2011)

    Article  MathSciNet  Google Scholar 

  11. Iorio, R., Linares, F., Scialom, M.: KdV and BO equations with bore-like data. Differ. Integral Equ. 11(6), 895–915 (1998)

    MathSciNet  Google Scholar 

  12. Kakutani, T., Matsuuchi, K.: Effect of viscosity on long gravity waves. J. Phys. Soc. Jpn. 39(1), 237–246 (1975)

    Article  MathSciNet  Google Scholar 

  13. Kato, T.: On the Korteweg–de Vries equation. Manuscripta Mathematica 28, 89–99 (1979)

    Article  MathSciNet  Google Scholar 

  14. Kato, T.: On nonlinear Schrödinger equations II \(H^s\)-solutions and unconditional well-posedness. J. Anal. Math. 67, 281–306 (1995). (with Correction in J. Anal. Math. 68 (1996), 305)

    Article  MathSciNet  Google Scholar 

  15. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the KdV equation. J. Am. Math. Soc. 4, 323–347 (1991)

    Article  Google Scholar 

  16. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46(4), 527–620 (1993)

    Article  MathSciNet  Google Scholar 

  17. Kenig, C.E., Ponce, G., Vega, L.: A bilinear estimate with applications to the KdV equation. J. Am. Math. Soc. 9, 573–603 (1996)

    Article  MathSciNet  Google Scholar 

  18. Koch, H., Tzvetkov, N.: On the local well-posedness of the Benjamin–Ono equation in \(H^s(\mathbb{R} )\). Int. Math. Res. Not. 26, 1449–1464 (2003)

    Article  MathSciNet  Google Scholar 

  19. Lannes, D.: The Water Waves Problem, Mathematical Analysis and Asymptotics, vol. 188. American Mathematical Society (2013)

  20. Masmoudi, N., Nakanishi, K.: From the Klein–Gordon–Zakharov system to the nonlinear Schrödinger equation. J. Hyperbolic Differ. Equ. 2(4), 975–1008 (2005)

    Article  MathSciNet  Google Scholar 

  21. Molinet, L., Ribaud, F.: The Cauchy problem for dissipative Korteweg–de Vries equations in Sobolev spaces of negative order. Indiana Univ. Math. J. 50(4), 1745–1776 (2001)

    Article  MathSciNet  Google Scholar 

  22. Molinet, L., Vento, S.: Improvement of the energy method for strongly non resonant dispersive equations and applications. Anal. PDE 8(6), 1455–1495 (2015)

    Article  MathSciNet  Google Scholar 

  23. Ott, E., Sudan, R.N.: Nonlinear theory of ion acoustic waves with Landau damping. Phys. Fluids 12, 2388–2394 (1969)

    Article  MathSciNet  Google Scholar 

  24. Ott, E., Sudan, R.N.: Damping of solitary waves. Phys. Fluids 13(6), 1432–1434 (1970)

    Article  Google Scholar 

  25. Palacios, J. M.: Local well-posedness for the gKdV equation on the background of a bounded function, to appear in Rev. Iber. Math. arXiv:2104.15126 (2021)

  26. Tao, T.: Multilinear weighted convolution of L\(^2\) functions, and applications to nonlinear dispersive equations. Am. J. Math. 123(5), 839–908 (2001)

    Article  MathSciNet  Google Scholar 

  27. Tao, T.: Nonlinear Dispersive Equations Local and Global Analysis, CBMS Regional Conference Series in Mathematics, vol. 106. American Mathematical Society, Providence (2006)

    Google Scholar 

  28. Zhidkov, P.: Korteweg–de Vries and nonlinear Schrödinger equations: qualitative theory. In: Lecture Notes in Mathematics, vol. 1756. Springer-Verlag, Berlin (2001)

Download references

Acknowledgements

The author expresses deep gratitude to her PhD Advisors Mohamad Darwich and Luc Molinet for their guidance during the elaboration of this work.

Funding

Funding was provided by Université Libanaise (Grant No. 9,000,000 LBP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to May Abdallah.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We present a concise proof of Lemma 3.2. We mainly follow [21] where a more general statement is proven.

1.1 Proof of Lemma 3.2

Knowing that our goal is to prove

$$\begin{aligned} \Vert g_{\xi } \Vert _{H^{1}({ I\!\!R})} \lesssim \Vert f\Vert _{L^2({ I\!\!R})} \quad \forall \xi \in { I\!\!R}, \end{aligned}$$

we recall (3.3) and proceed by direct calculations on \(g_{\xi }(t)\):

$$\begin{aligned} \displaystyle g_{\xi }(t)= & {} 1\hspace{-1mm} \textrm{I}_{{ I\!\!R}_+} (t) \ \eta (t)\int _0^t e^{-\nu |t-t'| |\xi |^{2\beta }} f(t') \ dt' \\ \displaystyle= & {} 1\hspace{-1mm} \textrm{I}_{{ I\!\!R}_+} (t) \ \eta (t) \ e^{-\nu |t||\xi |^{2 \beta }} \int _0^t e^{\nu t' |\xi |^{2\beta }} f(t') \ dt' \\ \displaystyle= & {} 1\hspace{-1mm} \textrm{I}_{{ I\!\!R}_+} (t) \ \eta (t) \ e^{-\nu |t||\xi |^{2 \beta }} \int _0^t e^{\nu t' |\xi |^{2\beta }} \bigg ( \int _{\mathbb {R}} e^{i t' \tau } \hat{f}(\tau ) \ d\tau \bigg ) \ dt' \\ \displaystyle= & {} 1\hspace{-1mm} \textrm{I}_{{ I\!\!R}_+} (t) \ \eta (t) \ e^{-\nu |t||\xi |^{2 \beta }} \int _{\mathbb {R}} \hat{f}(\tau )\int _0^t e^{t'(i \tau +\nu |\xi |^{2\beta })} \ dt' \ d\tau \\ \displaystyle= & {} 1\hspace{-1mm} \textrm{I}_{{ I\!\!R}_+} (t) \ \eta (t) \ e^{-\nu |t||\xi |^{2 \beta }} \int _{\mathbb {R}} \hat{f}(\tau )\ \frac{e^{(i t \tau + \nu t |\xi |^{2\beta })} - e^0}{i \tau +\nu |\xi |^{2\beta }} \ d\tau \\ \displaystyle= & {} 1\hspace{-1mm} \textrm{I}_{{ I\!\!R}_+} (t) \ \eta (t) \int _{\mathbb {R}} \hat{f}(\tau )\ \frac{e^{i t \tau } - e^{-\nu |t||\xi |^{2 \beta }}}{i \tau +\nu |\xi |^{2\beta }} \ d\tau \\ \displaystyle:= & {} 1\hspace{-1mm} \textrm{I}_{{ I\!\!R}_+} (t) \ k(t), \end{aligned}$$

where k(t) is a function defined on \(\mathbb {R}\) that can be seen as \(k(t)=k_1(t) + k_2(t)\) with

$$\begin{aligned} k_1(t):= \eta (t) \int _{\mathbb {R}} \hat{f}(\tau )\ \frac{1 - e^{-\nu |t||\xi |^{2 \beta }}}{i \tau + \nu |\xi |^{2\beta }} \ d\tau , \end{aligned}$$

and

$$\begin{aligned} k_2(t):= \eta (t) \int _{\mathbb {R}} \hat{f}(\tau )\ \frac{e^{i t \tau } - 1}{i \tau + \nu |\xi |^{2\beta }} \ d\tau . \end{aligned}$$

We remark that since \( f\in H^1({ I\!\!R}) \), the Lebesgue convergence theorem ensures that k is continuous with \(k(0)=0 \). Therefore, proving

$$\begin{aligned} ||k||_{H^1} \lesssim \ ||f||_{L^2} \end{aligned}$$
(6.1)

is sufficient to terminate this proof. We recall the following product estimate for \( s\ge 0\),

$$\begin{aligned} ||u \ v||_{H^s} \le ||u||_{H^s} \ ||v||_{L^{\infty }} + ||u||_{L^{\infty }} \ ||v||_{\dot{H^s}} \end{aligned}$$
(6.2)

and the fact that for any \(\lambda >0\) we have

$$\begin{aligned} ||f(\lambda t)||_{\dot{H^s}} = {\lambda }^{s-\frac{1}{2}} \ ||f(t)||_{\dot{H^s}}, \end{aligned}$$
(6.3)

both of which will be frequently used throughout this proof. Starting with \(k_1\), we split the estimation of \(||k_1||_{H^1}\) into two frequency domains:

  • Over \(\{|\xi | \ge 1 \}\): Using (6.2), we get

    $$\begin{aligned} \displaystyle ||k_1||_{H^1}\le & {} \bigg | \int _{\mathbb {R}} \frac{\hat{f}(\tau )}{i \tau + \nu |\xi |^{2\beta }} d\tau \bigg | \ ||\eta (t) (1 - e^{-\nu |t||\xi |^{2 \beta }})||_{H^1} \\ \displaystyle\le & {} \bigg | \int _{\mathbb {R}} \frac{\hat{f}(\tau )}{i \tau +\nu |\xi |^{2\beta }} d\tau \bigg | \ (||\eta ||_{H^1} + ||\eta \ e^{-\nu |t||\xi |^{2 \beta }}||_{H^1} ) \\ \displaystyle\le & {} \bigg | \int _{\mathbb {R}} \frac{\hat{f}(\tau )}{i \tau +\nu |\xi |^{2\beta }} d\tau \bigg | ( ||\eta ||_{H^1} + ||e^{-\nu |t||\xi |^{2 \beta }}||_{L^{\infty }}\\{} & {} + ||\eta (t)||_{L^{\infty }} + ||e^{-\nu |t||\xi |^{2 \beta }}||_{\dot{H^1}} ). \end{aligned}$$

    At this point, we use Cauchy–Schwarz inequality followed by a change of variable (\(\tau := \theta \, \nu |\xi |^{2 \beta }\)) to get

    $$\begin{aligned} \bigg | \int _{\mathbb {R}} \frac{\hat{f}(\tau )}{i \tau + \nu |\xi |^{2\beta }} d\tau \bigg | \le ||f||_{L^2} \bigg ( \int _{\mathbb {R}} \frac{d\tau }{|i \tau + \nu |\xi |^{2\beta }|^2} \bigg )^{\frac{1}{2}} \le \nu ^{-1/2} \ |\xi |^{-\beta } \ ||f||_{L^2}, \end{aligned}$$

    along with (6.3) on

    $$\begin{aligned} ||e^{-|t||\xi |^{2 \beta }}||_{\dot{H^1}} \lesssim \nu ^{1/2} \ |\xi |^{\beta }. \end{aligned}$$

    We hence obtain

    $$\begin{aligned} ||k_1||_{H^1} \lesssim ||f||_{L^2}\quad \quad \forall \ |\xi |\ge 1. \end{aligned}$$
  • Over \(\{|\xi | \le 1 \}\): Similar to some steps in the previous case, we write

    $$\begin{aligned} \displaystyle ||k_1||_{H^1}\le & {} \bigg | \int _{\mathbb {R}} \frac{\hat{f}(\tau )}{i \tau +\nu |\xi |^{2\beta }} d\tau \bigg | \ ||\eta \ (1- e^{-\nu |t||\xi |^{2 \beta }})||_{H^1} \nonumber \\ \displaystyle\le & {} \nu ^{-1/2} \ |\xi |^{-\beta } \ ||f||_{L^2} \ ||\eta \ (1- e^{-\nu |t||\xi |^{2 \beta }})||_{H^1}. \end{aligned}$$

    But, for the right term, we follow [17], and use the fact that for \(n\ge 1\), we have \( || \ |t^n| \ \eta (t)||_{H^1} \lesssim 2^n \), to get

    $$\begin{aligned} \displaystyle ||\eta (t) \ (1- e^{-\nu |t||\xi |^{2 \beta }})||_{H^1}\lesssim & {} \sum _{n\ge 1} \bigg | \bigg | \frac{|t^n| \ \eta (t) \ | \nu ^n | \ |\xi |^{2\beta n }}{n!} \bigg | \bigg | _{H^1} \\ \displaystyle\lesssim & {} \sum _{n \ge 1} \frac{\nu ^n |\xi |^{2 \beta n}}{n !} \ || \ |t^n| \ \eta (t)||_{H^1} \\ \displaystyle\lesssim & {} \nu |\xi |^{2 \beta } \sum _{n\ge 1} \frac{2^n}{n!} \lesssim \nu |\xi |^{2 \beta } \;. \end{aligned}$$

    And as \(|\xi | \le 1 \), we obtain

    $$\begin{aligned} ||k_1||_{H^1} \lesssim \sqrt{\nu } \, |\xi |^{\beta } \ ||f||_{L^2} \lesssim ||f||_{L^2}. \end{aligned}$$

Finally, covering both frequency domains, we get

$$\begin{aligned} ||k_1||_{H^1} \lesssim ||f||_{L^2} \quad \quad \forall \ \xi \in \mathbb {R}. \end{aligned}$$
(6.4)

Now, we move to estimate \(||k_2||_{H^1}\) which in turn will be split in the following sense

$$\begin{aligned} \displaystyle k_2(t)= & {} \eta (t) \int _{|\tau | \le 1} \hat{f}(\tau )\ \frac{e^{i t \tau } - 1}{i \tau + \nu |\xi |^{2\beta }} \ d\tau + \eta (t) \int _{|\tau | \ge 1} \hat{f}(\tau )\ \frac{e^{i t \tau } - 1}{i \tau +\nu |\xi |^{2\beta }} \ d\tau \\ \displaystyle:= & {} k_{2,l}(t) \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad + \quad \quad \quad \quad \quad \quad k_{2,h}(t). \end{aligned}$$

We proceed with estimating \(||k_{2,l}||_{H^1}\). Knowing that

$$\begin{aligned} \sum _{n \ge 1} \frac{x^n}{n !} = e^x - 1, \end{aligned}$$

and using the fact that \(|\tau | \le 1\) followed by Cauchy–Schwarz inequality, we write

$$\begin{aligned} \displaystyle || k_{2,l} ||_{H^1}= & {} \bigg | \bigg | \eta (t) \int _{|\tau | \le 1} \sum _{n \ge 1} \frac{(i t \tau )^n}{n !} \ \frac{\hat{f}(\tau )}{i \tau +\nu |\xi |^{2\beta }} d\tau \bigg | \bigg |_{H^1} \\ \displaystyle\lesssim & {} \sum _{n \ge 1} \frac{|| \ |t^n| \ \eta (t)||_{H^1}}{n !} \ \int _{|\tau |\le 1} \bigg | \frac{(i \tau )^n \ \hat{f}(\tau )}{i \tau + \nu |\xi |^{2\beta }} \bigg | d \tau \\ \displaystyle\lesssim & {} \bigg ( \sum _{n \ge 1} \frac{1}{(n-1)!} \bigg ) \ ||f||_{L^2}\; \sup _{n\ge 1} \bigg ( \int _{|\tau |\le 1} \frac{|\tau |^{2n} \, d\tau }{\tau ^2 + \nu ^2 |\xi |^{4 \beta }} \bigg ) ^{\frac{1}{2}} \\ \displaystyle\lesssim & {} \ ||f||_{L^2} . \end{aligned}$$

Hence,

$$\begin{aligned} ||k_{2,l}||_{H^1} \lesssim ||f||_{L^2} \quad \quad \forall \ \xi \in \mathbb {R}. \end{aligned}$$
(6.5)

On the other hand, benefiting from the continuity of the Fourier Transform operator from \(L^1\) to \(L^{\infty }\), Cauchy–Schwarz inequality and Parseval-Plancherel identity, along with (6.2), we get

$$\begin{aligned} \displaystyle || k_{2,h} ||_{H^1}= & {} \bigg | \bigg | \eta (t) \overline{{\mathcal {F}}}_t \bigg ( \frac{\hat{f}(\tau ) \ {1\hspace{-1mm} \textrm{I}_{|\tau | \ge 1} }}{i \tau +\nu |\xi |^{2\beta }} \bigg )(t) \bigg | \bigg |_{H^1_t} \nonumber \\ \displaystyle\lesssim & {} \bigg | \bigg |\overline{{\mathcal {F}}}_t\bigg ( \frac{\hat{f}(\tau ) \ 1\hspace{-1mm} \textrm{I}_{|\tau | \ge 1} }{i \tau +\nu |\xi |^{2\beta }}\bigg ) \bigg | \bigg |_{L^{\infty }} \ ||\eta ||_{H^1} + ||\eta ||_{L^\infty } \ \bigg | \bigg |\overline{{\mathcal {F}}}_t \bigg ( \frac{\hat{f}(\tau ) \ 1\hspace{-1mm} \textrm{I}_{|\tau | \ge 1} }{i \tau +\nu |\xi |^{2\beta }} \bigg ) \bigg | \bigg |_{\dot{H}^1} \nonumber \\ \displaystyle\lesssim & {} \bigg | \bigg |\frac{\hat{f}(\tau ) \ 1\hspace{-1mm} \textrm{I}_{|\tau | \ge 1} }{i \tau +\nu |\xi |^{2\beta }} \bigg | \bigg |_{L^1} + \bigg | \bigg |\overline{{\mathcal {F}}}_t \bigg ( \frac{\hat{f}(\tau ) \ 1\hspace{-1mm} \textrm{I}_{|\tau | \ge 1} }{i \tau + \nu |\xi |^{2\beta }} \bigg ) \bigg | \bigg |_{\dot{H}^1} \nonumber \\ \displaystyle\lesssim & {} ||f||_{L^2} \ \bigg ( \int _{|\tau | \ge 1} \frac{d \tau }{|\tau |^2 + \nu ^2 |\xi |^{4 \beta }} \bigg )^{\frac{1}{2}} + ||f||_{L^2} \ \sup _{|\tau | \ge 1} \bigg ( \frac{|\tau |^2}{|\tau |^2 + \nu ^2 |\xi |^{4 \beta }} \bigg )^{\frac{1}{2}} \nonumber \\ \displaystyle\lesssim & {} \ ||f||_{L^2} . \end{aligned}$$
(6.6)

Ultimately, gathering (6.4), (6.5), and (6.6), we end up with

$$\begin{aligned} ||k||_{H^1} \lesssim ||f||_{L^2} \quad \forall \ \xi \in \mathbb {R} \end{aligned}$$

and this terminates the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, M. On the well-posedness of dispersive–dissipative one dimensional equations with non decaying initial data. Monatsh Math 203, 267–311 (2024). https://doi.org/10.1007/s00605-023-01893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-023-01893-4

Keywords

Mathematics Subject Classification

Navigation