Skip to main content
Log in

Existence, regularity and symmetry of periodic traveling waves for Gardner–Ostrovsky type equations

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We study the existence, regularity and symmetry of periodic traveling solutions to a class of Gardner–Ostrovsky type equations, including the classical Gardner–Ostrovsky equation, the (modified) Ostrovsky and the reduced (modified) Ostrovsky equation. The modified Ostrovsky equation is also known as the short pulse equation. The Gardner-Ostrovsky equation is a model for internal ocean waves of large amplitude. We prove the existence of nontrivial, periodic traveling wave solutions using local bifurcation theory, where the wave speed serves as the bifurcation parameter. Moreover, we give a regularity analysis for periodic traveling solutions in the presence as well as absence of the Boussinesq dispersion. We see that the presence of Boussinesq dispersion implies the smoothness of periodic traveling wave solutions, while its absence may lead to singularities in the form of peaks or cusps. Eventually, we study the symmetry of periodic traveling solutions by the method of moving planes. A novel feature of the symmetry results in the absence of Boussinesq dispersion is that we do not need to impose a traditional monotonicity condition or a recently developed reflection criterion on the wave profiles to prove the statement on the symmetry of periodic traveling waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note that the results still hold for other \(\gamma >0\) after proper adjustment in the formulation.

  2. Without loss of generality, one can shift the wave profile such that the condition in the table is satisfied by \(\phi \) at \(x=0\) due to the translation invariance of equation (6.2).

References

  1. Aleksandrov, A.D.: Uniqueness theorems for surfaces in the large. V. Amer. Math. Soc. Transl. 2(21), 412–416 (1962)

    MathSciNet  MATH  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)

  3. Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat. 22, 1–37 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruell, G., Dhara, R.N.: Waves of maximal height for a class of nonlocal equations with homogeneous symbols. Indiana Univ. Math. J. 70(2), 711–742 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruell, G., Dhara, R.N.: Waves of maximal height for a class of nonlocal equations with homogeneous symbols. Indiana Univ. Math. J. 70, 711–742 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruell, G., Ehrnström, M., Pei, L.: Symmetry and decay of traveling wave solutions to the Whitham equation. J. Diff. Equ. 262, 4232–4254 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bruell, G., Pei, L.: Symmetry of periodic traveling waves for nonlocal dispersive equations. SIAM J. Math. Anal. 55(1), 486–507 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buffoni, B., Toland, J.: Analytic theory of global bifurcation. Princeton series in applied mathematics, Princeton University Press, Princeton, NJ, 2003. An introduction

  9. Coclite, G.M., di Ruvo, L.: On the solutions for an Ostrovsky type equation. Nonlinear Anal. Real World Appl. 55, 103141 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Costanzino, N., Manukian, V., Jones, C.K.R.T.: Solitary waves of the regularized short pulse and Ostrovsky equations. SIAM J. Math. Anal. 41, 2088–2106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Craig, W., Sternberg, P.: Symmetry of solitary waves. Comm. Partial Diff. Equ. 13, 603–633 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ehrnström, M., Johnson, M.A., Claassen, K.M.: Existence of a highest wave in a fully dispersive two-way shallow water model. Arch. Ration. Mech. Anal. 231, 1635–1673 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ehrnström, M., Johnson, M.A., Maehlen, O.I.H., Remonato, F.: On the bifurcation diagram of the capillary-gravity Whitham equation. Water Waves 1, 275–313 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ehrnström, M., Wahlén, E.: On Whitham’s conjecture of a highest cusped wave for a nonlocal dispersive equation. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 36, 1603–1637 (2019)

  15. Esfahani, A., Levandosky, S.: Solitary waves of a generalized Ostrovsky equation. Nonlinear Anal. Real World Appl. 63, 103395 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Galkin, V.M., Stepanyants, Y.A.: On the existence of stationary solitary waves in a rotating fluid. J. Appl. Math. Mech. Engl. Transl. 6, 939–943 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Garabedian, P.R.: Surface waves of finite depth. J. Anal. Math. 14, 161–169 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Geyer, A., Pelinovsky, D.: Linear instability and uniqueness of the peaked periodic wave in the reduced Ostrovsky equation. SIAM J. Math. Anal. 51, 1188–1208 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Geyer, A., Pelinovsky, D.E.: Spectral stability of periodic waves in the generalized reduced Ostrovsky equation. Lett. Math. Phys. 107, 1293–1314 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Geyer, A., Pelinovsky, D.E.: Spectral instability of the peaked periodic wave in the reduced Ostrovsky equations. Proc. Amer. Math. Soc. 148, 5109–5125 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grimshaw, R., Pelinovsky, D.: Global existence of small-norm solutions in the reduced Ostrovsky equation. Discrete Contin. Dyn. Syst. 34, 557–566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grimshaw, R.H.J., Helfrich, K., Johnson, E.R.: The reduced Ostrovsky equation: integrability and breaking. Stud. Appl. Math. 129, 414–436 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hakkaev, S., Stanislavova, M., Stefanov, A.: Periodic traveling waves of the regularized short pulse and Ostrovsky equations: existence and stability. SIAM J. Math. Anal. 49, 674–698 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hildrum, F., Xue, J.: Periodic Hölder waves in a class of negative-order dispersive equations. J. Diff. Equ. 343, 752–789 (2023)

    Article  MATH  Google Scholar 

  26. Holloway, P.E., Talipova, P.T.: A generalised korteweg-de vries model of internal tide transformation in the costal zone. J. Geophys. Res. 104, 18333–18350 (1999)

    Article  Google Scholar 

  27. Johnson, E.R., Pelinovsky, D.E.: Orbital stability of periodic waves in the class of reduced Ostrovsky equations. J. Diff. Equ. 261, 3268–3304 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kielhöfer, H.: Bifurcation theory. Appl. Math. Sci. 57(5), 156 (2004)

    MATH  Google Scholar 

  29. Leonov, A. I.: The effect of the earth’s rotation on the propagation of weak nonlinear surface and internal long oceanic waves. In: Fourth international conference on collective phenomena (Moscow: vol. 373 of Ann. New York Acad. Sci., New York Acad. Sci. New York 1981, 150–159 (1981)

  30. Levandosky, S.: On the stability of solitary waves of a generalized Ostrovsky equation. Anal. Math. Phys. 2, 407–437 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Levandosky, S., Liu, Y.: Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete Contin. Dyn. Syst. Ser. B 7, 793–806 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Liu, Y., Pelinovsky, D., Sakovich, A.: Wave breaking in the Ostrovsky-Hunter equation. SIAM J. Math. Anal. 42, 1967–1985 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Manukian, V., Costanzino, N., Jones, C.K.R.T., Sandstede, B.: Existence of multi-pulses of the regularized short-pulse and Ostrovsky equations. J. Dynam. Diff. Equ. 21, 607–622 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Experimental study of interfacial solitary waves: Experimental study of interfacial solitary waves. J. Fluid Mech. 366, 159–177 (1998)

    Article  Google Scholar 

  35. Obregon, M., Raj, N., Stepanyants, Y.: Adiabatic decay of internal solitons due to Earth’s rotation within the framework of the Gardner–Ostrovsky equation. Chaos 28, 033106 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ostrovsky, L.A., Stepanyants, Y.A.: Internal solitons in laboratory experiments: comparison with theoretical models. Chaos 15, 037111 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pei, L.: Exponential decay and symmetry of solitary waves to Degasperis–Procesi equation. J. Diff. Equ. 269, 7730–7749 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Posukhovskyi, I., Stefanov, A.: On the ground states of the Ostrovskyi equation and their stability. Stud. Appl. Math. 144, 548–575 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and series. Vol. 1, Gordon & Breach Science Publishers, New York,: Elementary functions. Translated from the Russian and with a preface by N. M, Queen (1986)

  40. Serrin, J.: A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43, 304–318 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  41. Taylor, M. E.: Partial differential equations III. Nonlinear equations, vol. 117 of Applied Mathematical Sciences, Springer, New York, second ed., 2011

  42. Truong, T., Wahlén, E., Wheeler, M.H.: Global bifurcation of solitary waves for the Whitham equation. Math. Ann. 383, 1521–1565 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tsugawa, K.: Well-posedness and weak rotation limit for the Ostrovsky equation. J. Diff. Equ. 247, 3163–3180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, J., Wang, Z.: Sharp well-posedness of the Cauchy problem for a generalized Ostrovsky equation with positive dispersion. Bound. Value Probl. 2017, 186 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, J., Yan, W.: The Cauchy problem for quadratic and cubic Ostrovsky equation with negative dispersion. Nonlinear Anal. Real World Appl. 43, 283–307 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yan, W., Li, Y., Huang, J., Duan, J.: The Cauchy problem for the Ostrovsky equation with positive dispersion. NoDEA Nonlinear Diff. Equ. Appl. 25, 22–37 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, P., Liu, Y.: Symmetry and uniqueness of the solitary-wave solution for the Ostrovsky equation. Arch. Ration. Mech. Anal. 196, 811–837 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author L.P. gratefully acknowledges financial support from the National Natural Science Foundation for Young Scientists of China (Grant No. 12001553), the Fundamental Research Funds for the Central Universities (Grant No. 20lgpy151), the Science and Technology Program of Guangzhou (Grant No. 202102080474) and the Guangdong Basic, and Applied Basic Research Foundation (Grant No. 2023A1515010599).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Pei.

Ethics declarations

Conflict of interest

This work does not have any conflicts of interest.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruell, G., Pei, L. Existence, regularity and symmetry of periodic traveling waves for Gardner–Ostrovsky type equations. Monatsh Math 202, 685–711 (2023). https://doi.org/10.1007/s00605-023-01891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-023-01891-6

Keywords

Mathematics Subject Classification

Navigation