Skip to main content
Log in

On the effect of zero-flipping on the stability of the phase retrieval problem in the Paley-Wiener class

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In the classical phase retrieval problem in the Paley-Wiener class \(PW_L\) for \(L>0\), i.e. to recover \(f\in PW_L\) from |f|, Akutowicz, Walther, and Hofstetter independently showed that all such solutions can be obtained by flipping an arbitrary set of complex zeros across the real line. This operation is called zero-flipping and we denote by \({\mathfrak {F}}_a f\) the resulting function. The operator \({\mathfrak {F}}_a\) is defined even if a is not a genuine zero of f, that is if we make an error on the location of the zero. Our main goal is to investigate the effect of \({\mathfrak {F}}_a\). We show that \({\mathfrak {F}}_af\) is no longer bandlimited but is still wide-banded. We then investigate the effect of \({\mathfrak {F}}_a\) on the stability of phase retrieval by estimating the quantity \(\inf _{|c|=1}\Vert cf-{\mathfrak {F}}_af\Vert _2\). We then investigate the stability of a double zero-flipping \(\inf _{|c|=1}\Vert cf-{\mathfrak {F}}_{{\bar{a}}}{\mathfrak {F}}_bf\Vert _2\) which turns out to be also the stability between two zero-flipping \(\inf _{|c|=1}\Vert c{\mathfrak {F}}_bf-{\mathfrak {F}}_af\Vert _2\). We show that this quantity is dominated by the distance between a and b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

All data generated or analysed during this study are included in this published article.

References

  1. Akutowicz, E.: On the determination of the phase of Fourier integral I. Trans. Am. Math. Soc. 83, 179–192 (1956)

    MathSciNet  MATH  Google Scholar 

  2. Akutowicz, E.: On the determination of the phase of Fourier integral II. Proc. Am. Math. Soc. 8, 234–238 (1957)

    MathSciNet  MATH  Google Scholar 

  3. Alaifari, R., Daubechies, I., Grohs, P., Yin, R.: Stable phase retrieval in infinite dimensions. Found. Comput. Math. 19, 869–900 (2019)

    Article  MathSciNet  Google Scholar 

  4. Alaifari, R., Grohs, P.: Phase retrieval in the general setting of continuous frames for Banach spaces. SIAM J. Math. Anal. 49, 1895–1911 (2017)

    Article  MathSciNet  Google Scholar 

  5. Cahill, J., Casazza, P., Daubechies, I.: Phase retrieval in infinite-dimensional Hilbert spaces. Trans. Am. Math. Soc. Ser. B 3, 63–76 (2016)

    Article  MathSciNet  Google Scholar 

  6. Candès, E., Eldar, Y., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM Rev. 57, 225–251 (2015)

    Article  MathSciNet  Google Scholar 

  7. Candès, E., Li, X., Soltanolkotabi, M.: Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Trans. Inform. Theory 61, 1985–2007 (2014)

    Article  MathSciNet  Google Scholar 

  8. Candès, E., Strohmer, T., Voronski, V.: PhaseLift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pur. Appl. Math. 66, 1241–1274 (2013)

    Article  MathSciNet  Google Scholar 

  9. Dainty, J., Fienup, J.: ‘Phase retrieval and image reconstruction for astronomy. In: Stark, H. (ed.) Image Recovery: Theory and Application, pp. 231–275. Academic Press, Cambridge (1987)

    Google Scholar 

  10. Drenth, A., Huiser, A., Ferwerda, H.: The problem of phase retrieval in light and electron microscopy of strong objects. Opt. Acta 22, 615–628 (1975)

    Article  MathSciNet  Google Scholar 

  11. Fienup, J.: Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982)

    Article  Google Scholar 

  12. Grohs, P., Koppensteiner, S., Rathmair, M.: Phase retrieval: uniqueness and stability. SIAM Rev. 62, 301–350 (2020)

    Article  MathSciNet  Google Scholar 

  13. Grohs, P., Rathmair, M.: Stable Gabor phase retrieval and spectral clustering. Comm. Pure Appl. Math. 72, 981–1043 (2019)

    Article  MathSciNet  Google Scholar 

  14. Hofstetter, E.: Construction of time-limited functions with specified autocorrelation functions. IEEE Trans. Inform. Theory 10, 119–126 (1964)

    Article  Google Scholar 

  15. Hurt, N.: Phase Retrieval and Zero Crossing (Mathematical Methods in Image Reconstruction). Kluwer Academic Publisher, Amsterdam (1989)

    Book  Google Scholar 

  16. Jaming, P.: Phase retrieval techniques for radar ambiguity problems. J. Fourier Anal. Appl. 5, 309–329 (1999)

    Article  MathSciNet  Google Scholar 

  17. Jaming, P.: Uniqueness results in an extension of Pauli’s phase retrieval. Appl. Comp. Harm. Anal. 37, 413–441 (2014)

    Article  MathSciNet  Google Scholar 

  18. Jaming, P., Kellay, K., Perez, R., III.: Phase retrieval for wide band signals. J. Fourier Anal. Appl. 26(54), 21 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Klibanov, M., Sacks, P., Tikhonravov, A.: The phase retrieval problem. Inverse Prob. 11, 1–28 (1995)

    Article  MathSciNet  Google Scholar 

  20. Luke, D., Burke, J., Lyon, R.: Optical wavefront reconstruction: theory and numerical methods. SIAM Rev. 44, 169–224 (2002)

    Article  MathSciNet  Google Scholar 

  21. Millane, R.: Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A 7, 394–411 (1990)

    Article  Google Scholar 

  22. Shechtman, Y., Eldar, Y., Cohen, O., Chapman, H., Miao, J., Segev, M.: Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32, 87–109 (2015)

    Article  Google Scholar 

  23. Titchmarsh, E.: The zeros of certain integral functions. Proc. London Math. Soc. s2–25, 283–302 (1926)

    Article  MathSciNet  Google Scholar 

  24. Waldspurger, I., d’Aspremont, A., Mallat, S.: Phase recovery, MaxCut and complex semidefinite programming. Math. Prog. 149, 47–81 (2015)

    Article  MathSciNet  Google Scholar 

  25. Walther, A.: The question of phase retrieval in optics. Opt. Acta 10, 41–49 (1963)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are particularly thankful to the referee for suggestions that lead to improvements of the manuscript. Remark 3.9 is directly inspired by one of their suggestions and the proof of Proposition 3.10 is essentially theirs and is stronger than our first formulation of Theorem 3.11.

Funding

The research of the second author is partially supported by the project ANR-18-CE40-0035. The third author is supported by the CHED-PhilFrance scholarship from Campus France and the Commission on Higher Education (CHED), Philippines The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Jaming.

Additional information

Communicated by Karlheinz Gröchenig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaming, P., Kellay, K. & Perez, R. On the effect of zero-flipping on the stability of the phase retrieval problem in the Paley-Wiener class. Monatsh Math 198, 757–776 (2022). https://doi.org/10.1007/s00605-022-01716-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-022-01716-y

Keywords

Mathematics Subject Classification

Navigation