Skip to main content
Log in

On a generalized volume-filling chemotaxis system with nonlinear signal production

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

This paper deals with a generalized volume-filling chemotaxis system with nonlinear signal production

$$\begin{aligned} \left\{ \begin{aligned}&u_t=\nabla \cdot (\varphi (u)\nabla u)-\nabla \cdot (\psi (u)\nabla v),&(x,t)\in \Omega \times (0,\infty ), \\&0=\Delta v-\mu (t)+f(u),&(x,t)\in \Omega \times (0,\infty ), \end{aligned} \right. \end{aligned}$$

under homogeneous Neumann boundary conditions in a smooth bounded domain \(\Omega \subset {{\mathbb {R}}}^{n}\), \(n\ge 1\), where \(\mu (t)=\frac{1}{|\Omega |}\int _{\Omega }f(u(x,t))dx\), \(\varphi (u)\) is a nonlinear diffusion, \(\psi (u)\) is a nonlinear sensitivity and f(u) is a nonlinear signal production function. Under suitable assumptions on the functions \(\varphi \), \(\psi \) and f, the global existence and finite-time blow-up of solutions for the above system are studied. The results partially generalize some recent ones obtained in Winkler (Nonlinearity 31:2031–2056, 2018), Li (J Math Anal Appl 480:123376, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos, N.D.: \(L^{p}\) bounds of solutions of reaction–diffusion equations. Commun. Partial Differ. Equ. 4, 827–868 (1979)

    Article  Google Scholar 

  2. Biler, P.: Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8, 715–743 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Chaplain, M.A.J., Lolas, G.: Mathematical modelling of cancer invasion of tissue: the role of the urokinase plasminogen activation system. Math. Models Methods Appl. Sci. 15, 1685–1734 (2005)

    Article  MathSciNet  Google Scholar 

  4. Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252, 5832–5851 (2012)

    Article  MathSciNet  Google Scholar 

  5. Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller–Segel system in dimension 2. Acta. Appl. Math. 129, 135–146 (2014)

    Article  MathSciNet  Google Scholar 

  6. Cieślak, T., Stinner, C.: New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models. J. Differ. Equ. 258, 2080–2113 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cieślak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21, 1057–1076 (2008)

    Article  MathSciNet  Google Scholar 

  8. Herrero, M., Velázquez, J.: A blow-up mechanism for a chemotaxis model. Ann. Scuola. Norm. Sup. Pisa. Cl. Sci. 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Hillen, T., Painter, K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26, 280–301 (2001)

    Article  MathSciNet  Google Scholar 

  10. Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    Article  MathSciNet  Google Scholar 

  11. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  Google Scholar 

  12. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller–Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    Article  MathSciNet  Google Scholar 

  13. Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329, 819–824 (1992)

    Article  MathSciNet  Google Scholar 

  14. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  15. Lankeit, J.: Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller–Segel system. Discrete Contin. Dyn. Syst. Ser. S 13, 233–255 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Li, Y.: Finite-time blow-up in quasilinear parabolic-elliptic chemotaxis system with nonlinear signal production. J. Math. Anal. Appl. 480, 123376 (2019)

    Article  MathSciNet  Google Scholar 

  17. Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Painter, K.J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10, 501–543 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Painter, K.J., Maini, P.K., Othmer, H.G.: Complex spatial patterns in a hybrid chemotaxis reaction–diffusion model. J. Math. Biol. 41, 285–314 (2000)

    Article  MathSciNet  Google Scholar 

  22. Senba, T., Suzuki, T.: Chemotactic collapse in a parabolic-elliptic system of mathematical biology. Adv. Differ. Equ. 6, 21–50 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Senba, T., Suzuki, T.: Weak solutions to a parabolic-elliptic system of chemotaxis. J. Funct. Anal. 191, 17–51 (2002)

    Article  MathSciNet  Google Scholar 

  24. Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species. J. Theor. Biol. 79, 83–99 (1979)

    Article  MathSciNet  Google Scholar 

  25. Tanaka, Y., Yokota, T.: Blow-up in a parabolic-elliptic Keller–Segel system with density-dependent sublinear sensitivity and logistic source. Math. Methods Appl. Sci. 2020, 1–25 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MathSciNet  Google Scholar 

  27. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32(6), 849–877 (2007)

    Article  MathSciNet  Google Scholar 

  28. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures. Appl. 100, 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  29. Winkler, M.: How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases. Math. Ann. 373, 1237–1282 (2019)

    Article  MathSciNet  Google Scholar 

  30. Winkler, M.: A critical blow-up exponent in a chemotaxis system with nonlinear signal production. Nonlinearity 31, 2031–2056 (2018)

    Article  MathSciNet  Google Scholar 

  31. Winkler, M.: Does a ‘volume-filling effect‘ always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12–24 (2010)

    Article  MathSciNet  Google Scholar 

  32. Winkler, M.: Global classical solvability and generic infinite-time blow-up in quasilinear Keller–Segel systems with bounded sensitivities. J. Differ. Equ. 266, 8034–8066 (2019)

    Article  MathSciNet  Google Scholar 

  33. Winkler, M.: Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69, 40 (2018)

    Article  MathSciNet  Google Scholar 

  34. Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)

    Article  MathSciNet  Google Scholar 

  35. Winkler, M., Djie, K.C.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. 72, 1044–1064 (2010)

    Article  MathSciNet  Google Scholar 

  36. Woodward, D.E., Tyson, R., Myerscough, M.R., Murray, J.D., Budrene, E.O., Berg, H.C.: Spatiotemporal patterns generated by Salmonella typhimurium. Biophys. J. 68, 2181–2189 (1995)

    Article  Google Scholar 

  37. Zheng, P., Mu, C., Hu, X.: Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete Contin. Dyn. Syst. A 35, 2299–2323 (2015)

    Article  MathSciNet  Google Scholar 

  38. Zheng, P., Mu, C., Hu, X., Tian, Y.: Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source. J. Math. Anal. Appl. 424, 509–522 (2015)

    Article  MathSciNet  Google Scholar 

  39. Zheng, P., Willie, R., Mu, C.: Global boundedness and stabilization in a two competing species chemotaxis-fluid system with two chemicals. J. Dyn. Differ. Equ. 32, 1371–1399 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to deeply thank the editors and reviewers for their insightful and constructive comments. This work is partially supported by National Natural Science Foundation of China (Grant Nos. 11601053, 11526042), Natural Science Foundation of Chongqing (Grant No. cstc2019jcyj-msxmX0082), China-South Africa Young Scientist Exchange Programme 2020, and The Hong Kong Scholars Program (Grant Nos. XJ2021042, 2021-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Zheng.

Additional information

Communicated by Joachim Escher.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, P. On a generalized volume-filling chemotaxis system with nonlinear signal production. Monatsh Math 198, 211–231 (2022). https://doi.org/10.1007/s00605-022-01669-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-022-01669-2

Keywords

Mathematics Subject Classification

Navigation